• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

Rendering a heatmap on 3d model surfaces

3 posts in this topic

I don't have a lot of graphics programming experience, but I'm trying to do something that will expand my horizons.


Suppose you had a list of events at various world positions, with an influence radius, and suppose you had a 3d model of an environment.


I'm trying to figure out how to best take this world event data and render it in 3d in a form that illustrates the usual heat map functionality, such as a radial falloff of influence around the events, and an accumulation of stacked influences for overlapping events, that ultimately result in a cool to warm color mapping based on the weight range.



I was thinking of possibly treating the events as 'point lights' in an opengl render loop and iteratively 'render' them into the 3d scene with their radius and falloffs represented how you normally would with a light. I suppose I could do them 8 at a time or whatever the max opengl supports, in such a way that their effects are additively blended. Is that a reasonably way to approach this? If so, then the part I'm not sure about is how to take the resulting rendering and normalize the values back into a cool->warm color gradient. Might that be a screen space post process in some way?


Most heatmap examples can find are 2d based, and involve essentially rasterizing the events into a 2d image additively with some falloff to generate a 2d image. I'm looking to do one in 3d. Not as volumetric event representations, but more likely as the color gradients on the 'floor' of a 3d level that may have a good amount of verticality and overlap. This is why treating them as additive lights comes to mind as a possible starting point. I'm just not sure how to get the min/max weight range out of of the resulting rendered data and how then to colorize the image according to normalize influences within that weight range.


Real time is preferred, so something shader based seems like it would be the way to go, but I'm interested to hear all potential solutions.




Share this post

Link to post
Share on other sites

There's two ways I'd approach it, 

1) If the data is going to be completely dynamic every frame and up to maybe a thousand of these events.

2) If the data is static, or new events are added over time but old ones aren't removed.


For #1, I'd do what you've started to describe. Deferred rendering would probably be better, but forward rendering (e.g. 8 at a time) would also work.

Create a floating point frame buffer, and for each "light" calculate the attenuation/falloff, and add all the light values together (e.g. additively blend them into the frame buffer).

Then in a post-processing step, you can make a shader that reads each pixel of that float texture, remaps it to a colour, and writes it out to a regular RGBA/8888 texture for display.


If the float->colour gradient steps needs to know the min/max/average value, then you can create a set of floating point frame-buffers, each half the resolution of the previous until you get to 1x1 pixel (or create a single one with a full mipmap chain -- same thing). After rendering to the full-res float buffer, you can make a post-process shader that reads 4 pixel from it and writes one pixel to the next smallest float buffer. It can take the min/max/average/etc of those 4 values and output it to the next buffer. Repeat and you end up with a 1x1 texture with the value you're looking for.


Your float -> colour post-processing shader can then read from this 1x1 texture in order to know what the avg/min/etc value is.



For #2, I'd work in texture-space instead of screen space. This requires that your model has an unique UV layout -- if the model has "lightmap texture coords" as well as regular ones, then for this, you'd want to be using the "lightmap" ones. These are just an arbitrary mapping to 2D texture space, where each triangle gets a non-overlapping region of a 2D texture to store it's "lightmap"/etc data.

First, make a float texture at a high enough resolution to give good detail on the surface of the model. Then render the model into this float texture, except instead of outputting the vertex position transformed by the WVP matrix, you instead output the "lightmap" texture coordinates (but scaled to the -1 to 1 range, instead of 0 to 1) as if they were the positions. This will allow you to "bake" data into the "lightmap" texture.

Then in the pixel shader, you compute the attenuation/etc as usual, and additively output all the light values.


Then once you've generated your "lightmap", you can perform the same steps as above to reduce it to a 1x1 texture if you want to find an average value, etc.

You can then render the model as usual in 3D (outputting positions to the screen), and you can texture it using the pre-generated lightmap.


If new events arrive, you can additively blend them into the existing lightmap texture.


Share this post

Link to post
Share on other sites

Thanks for the input. That confirms some of the stuff I was thinking and adds some interesting new things as well. Sounds like it's going to be rather complex.


One question with regards to automatically calculating the min/max range with which to map the heat gradient. That rendering would have to be the entire mesh in order to generate the global range for the color adjustments, so that step would need to be done with the camera at a perspective of seeing everything, correct? ie, looking down on the world, possibly with an orthographic perspective so that there is no perspective loss/covered pixels that will be lost. This may be a stretch goal and at first I will probably have the min/max values map to a slider that can be manipulated to map the color. That may be useful in other ways too, by allowing you to adjust the sliders to visualize detail that might be lost or very subtle with a fixed 'real' color mapping.


Basically I'm trying to make a general purpose heat map renderer that I wish to use with a game analytics library that I'm using to collect game events and submit them to gameanalytics.com which has gone free a while back. They don't have any heatmap rendering capabilities on the site unless you are using unity. Ultimately I want to release this library open source for users of game analytics or any custom event logging that want to visualize data in this way. Something like provide a .obj of your map geometry and an event log file and it will render a heatmap with it.


Share this post

Link to post
Share on other sites

Ok, I don't really understand the #1 parts about attenuation and falloff. I'm not familiar with how to calculate them. I'd also like to avoid the lightmapping approach due to the extra cost and book keeping of light mapping. My mesh doesn't have UVs either, so that's not terribly useful. In general the mesh is a colored flat shaded mesh pulled from a navigation mesh in which I don't have need for UVs.


I've got a basic app going where I'm passing the events into the shader as uniform blocks of vec4, representing the world position and event weight in the w. I'm having trouble figuring out how to calculate the world position of the fragment though.


My initial implementation intent is to loop through the events in the shader and accumulate the cost weighting per fragment by distance from fragment to each event. I'm just not sure how to calculate the world position of the fragment. If I can get it working it will be fully dynamic and can respond in real time to events and weighting changes better than most techniques.


Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By Toastmastern
      So it's been a while since I took a break from my whole creating a planet in DX11. Last time around I got stuck on fixing a nice LOD.
      A week back or so I got help to find this:
      In general this is what I'm trying to recreate in DX11, he that made that planet LOD uses OpenGL but that is a minor issue and something I can solve. But I have a question regarding the code
      He gets the position using this row
      vec4d pos = b.var.vec4d["position"]; Which is then used further down when he sends the variable "center" into the drawing function:
      if (pos.len() < 1) pos.norm(); world::draw(vec3d(pos.x, pos.y, pos.z));  
      Inside the draw function this happens:
      draw_recursive(p3[0], p3[1], p3[2], center); Basically the 3 vertices of the triangle and the center of details that he sent as a parameter earlier: vec3d(pos.x, pos.y, pos.z)
      Now onto my real question, he does vec3d edge_center[3] = { (p1 + p2) / 2, (p2 + p3) / 2, (p3 + p1) / 2 }; to get the edge center of each edge, nothing weird there.
      But this is used later on with:
      vec3d d = center + edge_center[i]; edge_test[i] = d.len() > ratio_size; edge_test is then used to evaluate if there should be a triangle drawn or if it should be split up into 3 new triangles instead. Why is it working for him? shouldn't it be like center - edge_center or something like that? Why adding them togheter? I asume here that the center is the center of details for the LOD. the position of the camera if stood on the ground of the planet and not up int he air like it is now.

      Full code can be seen here:
      If anyone would like to take a look and try to help me understand this code I would love this person. I'm running out of ideas on how to solve this in my own head, most likely twisted it one time to many up in my head
      Thanks in advance
    • By fllwr0491
      I googled around but are unable to find source code or details of implementation.
      What keywords should I search for this topic?
      Things I would like to know:
      A. How to ensure that partially covered pixels are rasterized?
         Apparently by expanding each triangle by 1 pixel or so, rasterization problem is almost solved.
         But it will result in an unindexable triangle list without tons of overlaps. Will it incur a large performance penalty?
      B. A-buffer like bitmask needs a read-modiry-write operation.
         How to ensure proper synchronizations in GLSL?
         GLSL seems to only allow int32 atomics on image.
      C. Is there some simple ways to estimate coverage on-the-fly?
         In case I am to draw 2D shapes onto an exisitng target:
         1. A multi-pass whatever-buffer seems overkill.
         2. Multisampling could cost a lot memory though all I need is better coverage.
            Besides, I have to blit twice, if draw target is not multisampled.
    • By mapra99

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
  • Popular Now