Sign in to follow this  
B_old

OpenGL OpenGL equivalent of D3D staging textures

Recommended Posts

B_old    689

I'm reading about texture readback in OpenGL and as usual I find many different possibilities. 

From D3D I'm used to copying the texture I want to read back into a staging texture which I than map in order to read the pixels. Should I basically do the same in OpenGL or is there a preferred way?

There is both glReadPixels() and glGetTexImage() and they seem to basically do the same thing.

Pixel buffer objects are often mentioned in this context and seem to be a means of making the previous calls asynchronous until you map the PBO. Is that correct?

So is glGetTexImage() & PBO a good approach or should I still copy to a different texture first, so that I can continue rendering to the texture I want to read back?

Edited by B_old

Share this post


Link to post
Share on other sites
cr88192    1570

my experience here:

you don't really want to use glReadPixels if it can be avoided, as it tends to cause a bit of a performance hit when used;

in most cases, PBOs are likely preferable.

 

 

however, it (raw glReadPixels) does seem to be ok for a few uses:

screenshots (typically less critical of performance);

(if used with care) in-game video recording (*).

 

*: usually because the current frame needs to finish rendering anyways.

 

this does require care though in terms of choosing the right settings for reading the screen image, as doing this badly can result in a significant drop in performance. also, you don't want to do video encoding in the render-thread (this sort of thing is fairly expensive), and in fact the render thread should do no more than necessary to pass it off to an encoder thread.

 

in this case:

ReadPixels into render-side buffer (currently using BGRA and UNSIGNED_INT_8_8_8_8);

lock shared buffer;

memcpy (from render-side buffer into temp buffer);

update frameCount (tells encoder that a new frame image awaits);

unlock shared buffer.

 

one can ask, why the locks and extra copy:

mostly sacrificing a little performance in the name of avoiding tearing;

ReadPixels is still slow enough that it can block the encoder thread a lot worse than a memcpy call will;

the encoder thread will also copy the shared buffer to a local buffer (with locking), likewise to help avoid tearing (and avoid locking the buffer for an extended period of time).

 

PBOs would still likely be a better solution though (vs using a raw glReadPixels or similar), but will add a bit of complexity into the process.

 

in times where ReadPixels has been used mid-render, the performance impact (of not using PBOs) has generally often been a bit more, severe.

 

also, if mapped immediately, they wont buy much (they will have a similar performance cost to doing a non-PBO read), hence the need typically for multiple rotating buffers. so, generally, a person will use a raw read if the results are needed immediately.

 

most of this should also apply to the use of GetTexImage and similar.

Edited by BGB

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By markshaw001
      Hi i am new to this forum  i wanted to ask for help from all of you i want to generate real time terrain using a 32 bit heightmap i am good at c++ and have started learning Opengl as i am very interested in making landscapes in opengl i have looked around the internet for help about this topic but i am not getting the hang of the concepts and what they are doing can some here suggests me some good resources for making terrain engine please for example like tutorials,books etc so that i can understand the whole concept of terrain generation.
       
    • By KarimIO
      Hey guys. I'm trying to get my application to work on my Nvidia GTX 970 desktop. It currently works on my Intel HD 3000 laptop, but on the desktop, every bind textures specifically from framebuffers, I get half a second of lag. This is done 4 times as I have three RGBA textures and one depth 32F buffer. I tried to use debugging software for the first time - RenderDoc only shows SwapBuffers() and no OGL calls, while Nvidia Nsight crashes upon execution, so neither are helpful. Without binding it runs regularly. This does not happen with non-framebuffer binds.
      GLFramebuffer::GLFramebuffer(FramebufferCreateInfo createInfo) { glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); textures = new GLuint[createInfo.numColorTargets]; glGenTextures(createInfo.numColorTargets, textures); GLenum *DrawBuffers = new GLenum[createInfo.numColorTargets]; for (uint32_t i = 0; i < createInfo.numColorTargets; i++) { glBindTexture(GL_TEXTURE_2D, textures[i]); GLint internalFormat; GLenum format; TranslateFormats(createInfo.colorFormats[i], format, internalFormat); // returns GL_RGBA and GL_RGBA glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, createInfo.width, createInfo.height, 0, format, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i; glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, textures[i], 0); } if (createInfo.depthFormat != FORMAT_DEPTH_NONE) { GLenum depthFormat; switch (createInfo.depthFormat) { case FORMAT_DEPTH_16: depthFormat = GL_DEPTH_COMPONENT16; break; case FORMAT_DEPTH_24: depthFormat = GL_DEPTH_COMPONENT24; break; case FORMAT_DEPTH_32: depthFormat = GL_DEPTH_COMPONENT32; break; case FORMAT_DEPTH_24_STENCIL_8: depthFormat = GL_DEPTH24_STENCIL8; break; case FORMAT_DEPTH_32_STENCIL_8: depthFormat = GL_DEPTH32F_STENCIL8; break; } glGenTextures(1, &depthrenderbuffer); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); glTexImage2D(GL_TEXTURE_2D, 0, depthFormat, createInfo.width, createInfo.height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthrenderbuffer, 0); } if (createInfo.numColorTargets > 0) glDrawBuffers(createInfo.numColorTargets, DrawBuffers); else glDrawBuffer(GL_NONE); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "Framebuffer Incomplete\n"; glBindFramebuffer(GL_FRAMEBUFFER, 0); width = createInfo.width; height = createInfo.height; } // ... // FBO Creation FramebufferCreateInfo gbufferCI; gbufferCI.colorFormats = gbufferCFs.data(); gbufferCI.depthFormat = FORMAT_DEPTH_32; gbufferCI.numColorTargets = gbufferCFs.size(); gbufferCI.width = engine.settings.resolutionX; gbufferCI.height = engine.settings.resolutionY; gbufferCI.renderPass = nullptr; gbuffer = graphicsWrapper->CreateFramebuffer(gbufferCI); // Bind glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); // Draw here... // Bind to textures glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textures[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textures[1]); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, textures[2]); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); Here is an extract of my code. I can't think of anything else to include. I've really been butting my head into a wall trying to think of a reason but I can think of none and all my research yields nothing. Thanks in advance!
    • By Adrianensis
      Hi everyone, I've shared my 2D Game Engine source code. It's the result of 4 years working on it (and I still continue improving features ) and I want to share with the community. You can see some videos on youtube and some demo gifs on my twitter account.
      This Engine has been developed as End-of-Degree Project and it is coded in Javascript, WebGL and GLSL. The engine is written from scratch.
      This is not a professional engine but it's for learning purposes, so anyone can review the code an learn basis about graphics, physics or game engine architecture. Source code on this GitHub repository.
      I'm available for a good conversation about Game Engine / Graphics Programming
    • By C0dR
      I would like to introduce the first version of my physically based camera rendering library, written in C++, called PhysiCam.
      Physicam is an open source OpenGL C++ library, which provides physically based camera rendering and parameters. It is based on OpenGL and designed to be used as either static library or dynamic library and can be integrated in existing applications.
       
      The following features are implemented:
      Physically based sensor and focal length calculation Autoexposure Manual exposure Lense distortion Bloom (influenced by ISO, Shutter Speed, Sensor type etc.) Bokeh (influenced by Aperture, Sensor type and focal length) Tonemapping  
      You can find the repository at https://github.com/0x2A/physicam
       
      I would be happy about feedback, suggestions or contributions.

    • By altay
      Hi folks,
      Imagine we have 8 different light sources in our scene and want dynamic shadow map for each of them. The question is how do we generate shadow maps? Do we render the scene for each to get the depth data? If so, how about performance? Do we deal with the performance issues just by applying general methods (e.g. frustum culling)?
      Thanks,
       
  • Popular Now