• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
michaelruecker

Compute Shader: ThreadGroupSize and Performance

2 posts in this topic

Hi Guys,

 

I have a few questions regarding ThreadGroupSize and performance.

 

1. No matter how many threads are in one thread group, it will always be executed by one SIMD / SMX (split in wavefronts / warps)? So lets say if I only need 1024 threads to process something and I start this in one group only, I have wasted performance since I could split it in smaller parts and have multiple SIMDs / SMXs working on it?

 

2. In case the above assumption is correct: If I dispatch only one thread group, will the other SIMD / SMX are blocked? Or do they work on other stuff like pixel processing, vector operations etc.? In other words... do all of them have to work on the same stuff or will the mix different things to keep them occupied?

 

3. Someone was writing this: 

 

Maintaining performance and correctness across devices becomes harder:
 
- Code hardwired to 32 threads per warp when run on AMD hardware 64 threads will waste execution resources
- Code hardwired to 64 threads per warp when run on Nvidia hardware can lead to races and affects the local memory budget

 

 

The first Statement makes perfectly sense. But the second... well I don't get it. Local memory is the main memory on the graphics card I guess not the thread shared memory? And could anyone explain what exactly happens that these races occur?

 

Thanks already!

 

0

Share this post


Link to post
Share on other sites

Thank you for your answer!

 

3. I couldn't say for sure without more context...

 

This is where I got that quote: http://cvg.ethz.ch/teaching/2011spring/gpgpu/GPU-Optimization.pdf (Page 15). There isn't much more info though. sad.png

 

With my current implementation for my particle system, I have noticed that my performance drops, if I increase my thread group size from 64 to 128 on my nvidia card (had 1 million particles active -> 1 million threads). And I am not using shared memory. All I do is consume() a particle from one buffer, process the particle and append() it to the other buffer. These should be atomic operations. So there must be another reason why it might be bad to have bigger thread group sizes...

 

Also, I would like to write a few words about why it is critical to use the correct amounts of threads per thread group for my bachelor thesis. For that I need some reason why it might be bad to have too many threads per thread group. So any theoretical reason would help. (I could not find anything on the web so far)

 

While we are at it... there is this GTC presentation: http://www.nvidia.com/content/GTC/documents/1015_GTC09.pdf. On page 44 it says something about thread group size heristics.

 

 

# of thread groups > # of multiprocessors

 

I guess this is only true if you actually have enough work to do. So if you only need one thread group at a size of 512 you might want to lower it to 64 or even 32 and dispatch more groups. But it is not advised to start a few more thread groups if you only need 32 threads and your group size is already 32 just to have the other multiprocessor occupied. If i am correct? (Just asking because you have to be super precise when writing papers...)

 

 

Amount of allocated shared memory per thread group should be at most half the total shared memory per multiprocessor

 

Why is that? So that the multiprocessor can already load data for the next thread group to be processed? 

 

 

Occupancy is:

- a metric to determine how effectively the hardware is kept busy
- the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps

 

This means having more warps in the queue and ready to be executed while the processor is still doing work on other warps, so that in case of latency it can switch out the warps and work on the warps in the queue instead?

Edited by me_12
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0