Jump to content
  • Advertisement
Sign in to follow this  
Plerion

OpenGL Using normals with voxels

This topic is 1603 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hello everyone,

 

I just set the prefix to OpenGL because thats in the end what my engine is based on. Tho the question is not related to OpenGL per se but of a general kind.

 

Currently i am rendering terrain using cubes. 'Calculating' the normals for the cube faces is fairly obvious but im running into some problems with the fact that a vertex basically has 3 normals. I am using a vertex buffer with the points of the cube and an index buffer which holds the indices for the faces. So a cube in the end consists of 8 vertices and up to 36 indices (depending on the neighbors). Now a vertex has 3 distinct normals and there should be no interpolation amongst the faces of the cube. Is there an elegant way to my normals working and avoiding to create 3 vertices for each point with lots of redundant data?

 

Thanks in advance for you help and a merry xmas

Plerion

Share this post


Link to post
Share on other sites
Advertisement
You can't avoid the "redundancy". For proper normals you need 24 distinct vertices (see here for something similar).
 
Some suggestions though:
- if bandwidth is a problem, you could use low-precision formats (normals and maybe even positions can be integers)
- how about creating the cube procedurally in the vertex shader ? (hmmm, probably only applicable with instancing...)

PS: Ah, ja, o schöni Wiehnachte smile.png

Share this post


Link to post
Share on other sites

Hey, thank you for the hints. I have considered several options. First i was still trying to somehow get it done with 8 vertices and like a cube map for normals but in the end decided thats not even worth trying, as it hits performance way too bad and im not really in trouble with the current bandwidth. So rather ive tried to compress my data (3 floats position, 3 floats normals) and ended up with 2 bytes position and 1 byte normal. 1 byte of the position contains x and y as chunks have 16x16 rows so its upper 4 and lower 4 bits of the value. The second byte contains the z position as a row can be up to 256 blocks high. Finally the normal is compressed like this: 1 -> 1/0/0, -1 -> -1/0/0, 10 -> 0/1/0, -10 -> 0/-1/0, 100 -> 0/0/1, -100 -> 0/0/-1 and then reconstructed using the step function and division. So now i use less badnwidth and have correct normals and still have a byte left for occlusion values (as im using an Int4 vector).

 

PS: Merci, das wünsch ich diar doch au :D

Share this post


Link to post
Share on other sites

If you only need flat shading, then you may actually get away with only eight vertices even if a cube with normals technically has 24 unique vertices. In flat shading, an attribute is automatically replicated over all vertices for a given primitive, and it is in fact possible to specify a cube with a vertex/normal array size of only eight entries. Look up the command glProvokingVertex which specifies which of the three vertices in a triangle, for example, that contains the flat-shaded attribute.

 

If you have for example a flat-shaded normal attribute in your vertex shader, and specify the last vertex as the provoking vertex, then the last vertex is the one containing the normal for all three vertices. The first two vertices effectively contains unused normal data and you should be able to take advantage of that to reduce the size of the vertex arrays.

//     7-----6
//    /|    /|
//   3-----2 |
//   | 4---|-5 
//   |/    |/
//   0-----1
 
    vector3 p[] = {
       { -1, -1, -1},
       {  1, -1, -1},
       {  1,  1, -1},
       { -1,  1, -1},
       { -1, -1,  1},
       {  1, -1,  1},
       {  1,  1,  1},
       { -1,  1,  1},
    };
 
    vector3 n[] = {
       {  0, -1,  0},
       {  1,  0,  0},
       {  0,  0, -1},
       { -1,  0,  0},
       {  0,  0,  0},
       {  0,  0,  0},
       {  0,  1,  0},
       {  0,  0,  1},
    };
 
    int index[] = {
        0,1,2,3,0,2,
        5,6,1,6,2,1,
        5,4,7,6,5,7,
        4,0,3,7,4,3,
        3,2,6,7,3,6,
        5,4,0,1,5,0,
    };

Try and see if this works, I don't have the possibility to try it myself at the moment. The index list is a list for 12 CCW-winded triangles building the cube in the comment at the top of the code.

 

If you only need to draw parts of the cube, you can truncate the index list accordingly.

Edited by Brother Bob

Share this post


Link to post
Share on other sites
Brother Bob's solution is pretty interesting, and probably better than what I'm about to propose, but I thought I'd add another option to the pot anyway.

You could construct the normal in the fragment shader using the derivative intrinsic. Basically: n = normalize(cross(dfdx(pos), dfdy(pos)));

Obvious drawback is that you must perform that calculation per fragment. But you don't even have to send any normal data down to the vertex shader!

Also, in a similar vein, you could compute the primitive normal in the geometry shader and spare yourself the per fragment computation, but it's not a given that that would be any faster.

Share this post


Link to post
Share on other sites
And yet another idea: Vertex Puller. One of the latest GPU Pro books has a chapter about this. In essence you don't bind your vertex (and index buffer) as such, but as readable buffers or textures. Then in the vertex shader you load/sample from them using the vertex ID. Manual input assembler, so to speak.

PS: This is just for fun (D3D11 vertex shader, use with Draw(36,0)) wink.png :

void ProceduralCubeVS(uint iid: SV_VertexID,
  out float3 position   : POSITION,
  out float2 tex        : TEXCOORD,
  out float3 normal     : NORMAL,    
  out float4 positionCS : SV_Position)
{
    uint face = iid / 6;
    uint index = iid % 6;
    float sign = face >= 3 ? 1 : -1;
    uint dir = face % 3;
    normal = float3(dir.xxx == uint3(0,1,2));
    float3 t = normal.yzx;
    float3 b = normal.zxy;

    const uint FSQIDS[] = {0,1,2,1,3,2};    
    uint id = FSQIDS[index];
    tex = float2(id & 1, (id >> 1) & 1);
    float2 fsq = float2(tex * float2(1,-1) + float2(-0.5,0.5));    
    normal *= sign;
    position = float3(fsq.x * t + sign * fsq.y * b + 0.5 * normal);

    positionCS = mul(float4(position,1), WorldViewProjection);
    position = mul(float4(position, 1), World).xyz;    
    normal = mul(normal, (float3x3)World).xyz;    
}

768b0a297248306.jpg

Share this post


Link to post
Share on other sites

@BrotherBob: Your suggestion is very interesting! I will surely try that as soon as i find time!

@Samith: I will try this as well and see what impact on performance it has and then see what balances out better, thanks for the tipp!

@unbird: Hehe, that looks interesting, but need to have a closer look at it first :D

Share this post


Link to post
Share on other sites

An important question: Is this really a problem?

 

You should wait with this optimization until you find out that it is really an issue. Then, depending on exactly what the issue is, you optimize.

 

It is not unusual that a change of algorithms can give much better pay-off. For example, improved culling or the use of LOD.

Share this post


Link to post
Share on other sites

I have basiclly two solutions to this issue

 

1. send points to the geometry shader and use it to draw cubes, this should be good for when you have a lot of freemoving cubes or basically cube particles.

 

2. if the terrain is more or less static then assembling the vertecies, normals and texture coordinates manually into raw ttriangles and then pushing it into a VBO is the way to go, even with the simplest possible culling it's fast enough that you don't have to mess around with indices at all.

Share this post


Link to post
Share on other sites

If you only need flat shading, then you may actually get away with only eight vertices even if a cube with normals technically has 24 unique vertices. In flat shading, an attribute is automatically replicated over all vertices for a given primitive, and it is in fact possible to specify a cube with a vertex/normal array size of only eight entries. Look up the command glProvokingVertex which specifies which of the three vertices in a triangle, for example, that contains the flat-shaded attribute.
 
If you have for example a flat-shaded normal attribute in your vertex shader, and specify the last vertex as the provoking vertex, then the last vertex is the one containing the normal for all three vertices. The first two vertices effectively contains unused normal data and you should be able to take advantage of that to reduce the size of the vertex arrays.

//     7-----6
//    /|    /|
//   3-----2 |
//   | 4---|-5 
//   |/    |/
//   0-----1
 
    vector3 p[] = {
       { -1, -1, -1},
       {  1, -1, -1},
       {  1,  1, -1},
       { -1,  1, -1},
       { -1, -1,  1},
       {  1, -1,  1},
       {  1,  1,  1},
       { -1,  1,  1},
    };
 
    vector3 n[] = {
       {  0, -1,  0},
       {  1,  0,  0},
       {  0,  0, -1},
       { -1,  0,  0},
       {  0,  0,  0},
       {  0,  0,  0},
       {  0,  1,  0},
       {  0,  0,  1},
    };
 
    int index[] = {
        0,1,2,3,0,2,
        5,6,1,6,2,1,
        5,4,7,6,5,7,
        4,0,3,7,4,3,
        3,2,6,7,3,6,
        5,4,0,1,5,0,
    };
Try and see if this works, I don't have the possibility to try it myself at the moment. The index list is a list for 12 CCW-winded triangles building the cube in the comment at the top of the code.
 
If you only need to draw parts of the cube, you can truncate the index list accordingly.


I'd like to point out that this solution is very special to this case currently, if you start adding other attributes, such as texture coordinates. This solution begins to fall apart, and you are back to square one.

Although i will admit it's pretty creative, not something i would have thought of trying.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By iArtist93
      I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
      1- First pass = depth
      2- Second pass = ambient
      3- [3 .. n] for all the lights in the scene.
      I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
      But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
      Is there anything wrong with those steps or is there any improvement to this process?
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      Video: 
       
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
       
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
       
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      Main:
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
       
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
      Brain.cpp
      Error.cpp
      IndexBuffer.cpp
      Input.cpp
      Renderer.cpp
      Scene.cpp
      Shader.cpp
      Sprite.cpp
      Texture.cpp
      VertexArray.cpp
      VertexBuffer.cpp
      VertexBufferLayout.cpp
      Window.cpp
      Brain.h
      Error.h
      IndexBuffer.h
      Input.h
      Renderer.h
      Scene.h
      Shader.h
      SpaceShooterEngine.h
      Sprite.h
      Texture.h
      VertexArray.h
      VertexBuffer.h
      VertexBufferLayout.h
      Window.h
    • By Cristian Decu
      Hello fellow programmers,
      For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
      can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.
       
      I have used the classical quadtree LOD approach;
      I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
      Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
      creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
      normalize all the vertices on my vertex shader i can get a perfect sphere.
      T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
      the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
      The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
      The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as `r_Grid'.
      // spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The `r_ModelViewProjection' matrix is generated on the CPU in this manner.
      // No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
      Each frame i'm rendering each node by sending the generated matrices this way.
      // set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
      Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
      of the planet the rounding errors start to kick in giving me that lovely stairs effect.
      I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
      getting rid of those rounding errors.
       
      My question is how can i achieve this relative to camera rendering in my scenario here?
      I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
      I only use double on the CPU side where i also do most of the matrix multiplications.
      As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).
       
      Thank you for your suggestions!
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!