• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Super Llama

Can't get Quaternion Time Derivative to work?

4 posts in this topic

Okay I'm sure this is a stupid question and I'm either completely misusing this formula or I'm missing something obvious, but I can't for the life of me figure out how I'm supposed to apply an angular velocity vector to an orientation quaternion, despite finding the Quaternion Time Derivative formula on multiple websites.

 

From what I've read, you can take an angular velocity vector like (0, 0, 3.14) for a 180 degree turn around the Z axis each second, then use these values in a non-normalized quaternion with zero w (0 0 3.14 0) -- I'm using xyzw representation for my quaternions -- and then you can multiply it by a delta time and an orientation quaternion and divide it by two, then add it to the orientation quaternion, and that should properly rotate the orientation quaternion according to the velocity. The formula looks like this: Q' = Q + 0.5t(W x Q).

 

Anyway, when I went to try it with a delta time of one second, it didn't seem to work. I take a unit quaternion with no rotation:

(0 0 0 1)

then multiply it by the angular velocity quaternion (with the original on the right, as per the formula)

(0 0 3.14 0) x (0 0 0 1) = (0 0 3.14 0)

then divide that by two

(0 0 1.57 0)

then add it to the original quaternion

(0 0 1.57 1)

but when I apply this rotation, it's 0, 0, -115 in euler angles, not 0, 0, 180.

 

So yeah... does anyone know what the problem is? I'd rather avoid having to build a quaternion from axis-angles each frame if I can, since that would require sin and cos which are more costly than just arithmetic, and everyone seems to say this formula works just as well, but I'm not seeing it.

0

Share this post


Link to post
Share on other sites
The derivative is a linear approximation, so a formula for the derivative of something only tells you how it changes in infinitesimally small periods of time. In your case, one second is too large of a step for the approximation to work.

Try this instead:

Q' = (cos(t*|W|/2) + sin(t*|W|/2)*W/|W|) * Q

If you plug in Q=(0 0 0 1), W=(0 0 pi 0) and t=1, you get Q'=(0 0 1 0)
1

Share this post


Link to post
Share on other sites

OHH right, that makes perfect sense, thank you! I knew I was missing something obvious lol. I guess that means it technically works if you keep re-normalizing the quaternion and the game doesn't go longer than a few fractions of a second before updating the delta, but I guess using trig functions is inevitable if I want to do it right in all situations. I think I'll just construct a new unit quaternion from my angular velocity (since that only takes 5 math function calls) and multiply that onto it, unless there's a more efficient way I don't know about.

0

Share this post


Link to post
Share on other sites

Notice that my formula is exact only if the angular velocity is constant for the whole second. In your simulation that will probably not be true, and you'll have to split time into smaller steps. At that point the steps will probably be small enough that your original approximation is perfectly acceptable.

 

I should have mentioned in my previous post that if you make the approximations cos(epsilon) = 1 and sin(epsilon)=epsilon (which are good for small epsilon), my formula turns into the one you posted.

Edited by Álvaro
1

Share this post


Link to post
Share on other sites

Oh okay, I was wondering where that came from, that makes sense too. Thanks for the explanations, this is exactly what I needed to know.

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0