• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
user1234849034

How to move particle on sphere

5 posts in this topic

I have a particle where I know:

  1. position (either in euclidean or spherical coordinates)
  2. direction (360°/2 pi radians)
  3. speed (linear distance).

How do one calculate next position for the particle?

0

Share this post


Link to post
Share on other sites

Weird. I just answered a question about quaternions that is essentially the same question.

 

If your time step is small, move the particle in R^3, forgetting about the sphere for a moment, then project back to the sphere. If that approximation is not good enough, there is a formula you can use that involves computing cosine and sine. I'll figure it out and post it, if you really need it.

1

Share this post


Link to post
Share on other sites

I don't know how to calculate forward in R^3 either. One solution I thought of is to rotate particle direction around sphere normal at particle position. Sound simple but I find matrix rotations hard. I don't understand how to write a "vector3.rotateAround(vector axis, float angle)"-function.

 

My velocities are probably small  but I don't know yet, I trying to simulate fluids and they have a tendency to blow up if not correct.

 

Right now I would settle for any algorithm that would help me progress.

 

0

Share this post


Link to post
Share on other sites

If (x,y,z) is a point on the surface of the unit sphere centered at the origin, the East vector is something like (z, 0, -x) and the North vector is something like (-xy/S, S, -yz/S), with S:=sqrt(1-y^2). You can then express your direction as North * cos(angle) + East * sin(angle).

 

I kind of rushed through the Math, so I am not 100% certain that the formulas are correct, but you can try to reproduce them yourself.

1

Share this post


Link to post
Share on other sites


I don't understand how to write a "vector3.rotateAround(vector axis, float angle)"-function.

 

 

It's very easy to do with [url="http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation"]quaternions[/url]. You just need to know how to construct the quaternion that represents the rotation you want, which is cos(angle/2) + sin(angle/2)*x*i + sin(angle/2)*y*j + sin(angle/2)*z*k, and how to rotate a point by the rotation represented by a unit-length quaternion, which is q' = q * v * conj(q).

1

Share this post


Link to post
Share on other sites

If (x,y,z) is a point on the surface of the unit sphere centered at the origin, the East vector is something like (z, 0, -x) and the North vector is something like (-xy/S, S, -yz/S), with S:=sqrt(1-y^2). You can then express your direction as North * cos(angle) + East * sin(angle).

 

I kind of rushed through the Math, so I am not 100% certain that the formulas are correct, but you can try to reproduce them yourself.

 

Really, thanks a lot! 

I tried it and it works.

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0