• Advertisement
Sign in to follow this  

OpenGL Real-time Ray Tracer in GLSL

This topic is 1386 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi there, I'm new in Computer Graphics. so I started writing Ray Tracer and here is't.

and there are some questions I would like to answer..

 

I wrote iterative ray trace, I have one global array of stuctures; each structure can contain state of each step for ray trace. 

and it's size is 2 ^ Depth; because in each state I may throw 2 rays(max), reflection or refraction ray, or otherwise its diffuse object so it doesn't need any other calculations.

at last I loop from last state to first one and update parent states.

 

also I'm passing all the information about my objects with uniforms. and drawing just single rectangle to make opengl call fragment shader for each pixel.

 

It's my solution and isn't too fast.. got fps 10.

so If I'm doing something wrongly or there is a some better way, I'll be glad to listen.

 

thanks.

 

https://www.youtube.com/watch?v=eef9EgOpBh4

 

 

Share this post


Link to post
Share on other sites
Advertisement

Is this an April Fools?  I would say, (if you're not joking) then you understand way more than most.  For the next step, I would recommend:

 

Physically Based Rendering, Second Edition: From Theory To Implementation [Hardcover] and Source Code:

 

http://www.pbrt.org/index.php

http://www.amazon.com/gp/product/0123750792?ie=UTF8&tag=pharr-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0123750792

 

The book walks you through all the source code for the renderer.

Share this post


Link to post
Share on other sites

I don't quite get how you did this :)

In my real-time ray tracer I used compute shader instead of fragment. I am using this to experiment with new rendering technique, so it's not very sophisticated, it got texturing, reflections, shadows and classic Phong, and it's only based on speheres. I can get 60fps in 720p with one large textured sphere and dozen other flying around. All spheres are reflective (5 bounces). What I did is I just passed arrays of structures with lights and sphere's to the shader and did everything in one huge (aka uber) shader. It required to implement stack inside shader and other nifty things.

 

Could you describe step by step what are you doing? Could you provide us with more details, like resolution, your hardware etc.?

 

On a side note, ray tracing is hardcore to implement in real-time and low fps is predictable, "I'm new in Computer Graphics" and real-time ray tracing doesn't mix if you ask me.

Share this post


Link to post
Share on other sites

It's my solution and isn't too fast.. got fps 10.

so If I'm doing something wrongly or there is a some better way, I'll be glad to listen.

 

I didn't quite understand you when you explained your approach. If you really want someone to critique it, then you should probably post your code. Also, if you are going to give performance information like FPS, you should really say what type of graphics card was used. Is that 10fps on a 8800GT or is that 10fps on a Titan Z? It makes a huge difference.

Edited by Chris_F

Share this post


Link to post
Share on other sites

Thanks for reply :)

I said "I;m new" because it's my first project after doing some examples in OpenGL..

I'm uploading my code to git hub so, will post it here soon.

 

and also my Video Card is NVidia GeForce 525M.

Share this post


Link to post
Share on other sites

I think you did it in a similar way as I did mine.

 

I don't see part for triangle intersection? Does that mean the walls in your video are just enormous speheres? smile.png

 

More reasonable approach for ray tracing in real-time is to use either OpenCL or CUDA, they are much more flexible than fragment shaders. As you experienced you got 10 fps for scene with 10(?) spheres and 2 lights. I don't want to discourage you in any way, but imagine you want to render scene with, for instance, 5000 triangles smile.png For that you are bound to use acceleration structures, and they might be tough to implement with GPGPU.

 

If you want to follow the path of writing real-time ray tracers, you can try implementing geometry shader ray tracing:

http://ar.in.tum.de/pub/ralovich2010rsigs/ralovich2010rsigs.pdf

 

Note that this technique is slower than fragment shader method (ready article's results section for details).

Edited by Tasaq

Share this post


Link to post
Share on other sites

I don't see part for triangle intersection? Does that mean the walls in your video are just enormous speheres?
 

 

 


More reasonable approach for ray tracing in real-time is to use either OpenCL or CUDA, they are much more flexible than fragment shaders. As you experienced you got 10 fps for scene with 10(?) spheres and 2 lights. I don't want to discourage you in any way, but imagine you want to render scene with, for instance, 5000 triangles For that you are bound to use acceleration structures, and they might be tough to implement with GPGPU.

 

It wrote that for educational purposes, so this was the proof that my idea was correct biggrin.png

but now if I want to write some acceleration structure, is there a way to pass it into a shader? 
As I have read, there are limited number of uniform variables in GLSL..
The way I'm passing uniforms to shader are Ok? or there is a better way? :?
Edited by 0Silencer

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
    • By xhcao
      Does sync be needed to read texture content after access texture image in compute shader?
      My simple code is as below,
      glUseProgram(program.get());
      glBindImageTexture(0, texture[0], 0, GL_FALSE, 3, GL_READ_ONLY, GL_R32UI);
      glBindImageTexture(1, texture[1], 0, GL_FALSE, 4, GL_WRITE_ONLY, GL_R32UI);
      glDispatchCompute(1, 1, 1);
      // Does sync be needed here?
      glUseProgram(0);
      glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
      glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                     GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, texture[1], 0);
      glReadPixels(0, 0, kWidth, kHeight, GL_RED_INTEGER, GL_UNSIGNED_INT, outputValues);
       
      Compute shader is very simple, imageLoad content from texture[0], and imageStore content to texture[1]. Does need to sync after dispatchCompute?
  • Advertisement