• Advertisement
Sign in to follow this  

OpenGL Eliminating OpenGL/DirectX differences

This topic is 1383 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hello,

 

I've writting myself a graphical wrapper for writing API independant code, also including a basic unified shading language. For 90% of the times this works well without any kind of modification, but then there are times when I'm just having such trouble getting stuff to work under OpenGL4. My entry-point, if you will, is always DirectX11, because I'm far more common to it, and so are my coordinate systems (LH).

 

Now most of my problems are due to matrix multiplications. First thing I did was flip the multiplication order when parsing out GLSL shader code. I also flipped the sign of the m22-value in the projection-matrices to resolve a problem where everything was rendered upside down.

Matrix MatPerspFovLH(float fovy, float aspect, float zn, float zf)
{
    float yScale = cotan(fovy/2.0f);
    float xScale = yScale / aspect;

    return Matrix(    xScale, 0.0f,    0.0f,            0.0f,
#ifdef ACL_API_GL4
                    0.0f,    -yScale,    0.0f,            0.0f,
#else
                    0.0f,    yScale,    0.0f,            0.0f,
#endif
                    0.0f,    0.0f,    zf/(zf-zn),        1.0,
                    0.0f,    0.0f,    -zn*zf/(zf-zn),    0.0f);
}

However, this was a total quess (I'm still quite surprised it works), and there are still occasional problems, like right now I'm trying to solve a complete f***-up in my cascaded shadow maps in opengl.

 

The question now mainly is: Is there any way, like some sort of setting, to make matrix multiplication, screen space etc... compatible to DirectX in OpenGL (or vice versa, for all I care), without having to "manually" adjust multiplication order and tampering with the matrix values? I'm also hoping that those issues will go away once that works, so well...

Share this post


Link to post
Share on other sites
Advertisement

I'm not 100% sure, but ...

 

1.) OpenGL 4 is used to work with column vectors and matrices in row major order. D3D11 is used to work with row vectors and matrices in column major order. In memory this makes the same sequence of numbers.

 

  EDIT: So, after some more research … HLSL assumes column-major order at default, and GLSL assumes column-major order, too. Just D3D9 FFP and DirectXMath use row-major layout.

 

2.) Using shaders give you the freedom to choose between A * B and B * A like you need. You can use column / row vectors in both HLSL and GLSL. 

 

3.) If you want to use LH co-ordinate system with OpenGL, the only thing you need to do is a scaling S(1,1,-1) placed between the projection matrix and the view matrix. Because the projection matrix is different anyway, you can include the mirroring into the projection matrix used for OpenGL, like so when using row vectors:

     V * ( S(1,1,-1) * PGL )

 

4.) The fact that you need to negate m22 of the projection matrix … seems me strange. I assume that there is a mistake somewhere.

 

  EDIT: After some research: The reason is in the window origin problem.

Edited by haegarr

Share this post


Link to post
Share on other sites

I'm interested in what is wrong with my previous answer. It would be nice if you can clarify this...

 

1 - Change the matrix layout(row/column major)

IMHO I have not said something contradicting this. However, the freedom is not without costs. With the input registers of the GPU being exactly 4 elements wide, it is most efficient if the columns / rows of a matrix passed into the GPU are 4 elements wide. This is no problem with a 4 by 4 matrix, obviously, but it matters if one passes 4 by 3 matrices (as is sufficient for affine transformations because the remaining row / column is constant; the most obvious use case is GPU based skinning).

 

Within an application that was implemented following OpenGL's historical conventions, a 4 column by 3 row matrix in column major order nevertheless requires 4 input registers although only 12 elements are actually used. Analogously are things with D3D's historical conventions. Hence the conventions of both OpenGL and D3D were changed (I'm still speaking of a convention but not a constrained). Fortunately both changes are so that the absolute sequence of values is again the same for both OpenGL and D3D. So passing them by cbuffer / UBOs makes no difference, assuming the expected layout is used. That's what my point 1.) in the above answer is about. 

 

2 - Mat * Vec/Vec * Mat depends ONLY on your math library.
I mentioned in point 2.) that both products can be computed in shaders, too.
 
BTW: It is not totally true that the order depends only on the math library. With the layout parametrization of matrices one can pass in matrices so that they work as being transposed. Because GPUs do not distinguish between N by 1 and 1 by N vectors, it is sufficient to transpose the matrix if one wants to reverse the order of matrix products inside the shader. So the order of multiplication depends on both how matrices are provided by the math library and how they are passed into the shader.

 

3 - There is no such a thing "LEFT/RIGHT hand coord system" for the hardware. You can use any coord sys. 

Yes, you can, but you need to take care that camera-space coordinates are transformed into the intended clip-space coordinates (which differ between D3D and OpenGL). You do this by defining an appropriate projection matrix. The projections for a LH and a RH co-ordinate system will differ. With the well known standard projection matrix PGL of OpenGL in mind, applying a mirroring onto the z axis yields in the corresponding LH matrix. That's what my point 3.) in the above answer is about. Is there a mistake in this reasoning?

 

 

@OP:

There is a sample book chapter The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D (PDF) that deals with OpenGL ES 2.0 being implemented on top of Direct3D 9. That is not exactly what you are after, but perhaps some of the things mentioned there may be of interest for you. Two aspects that came to my mind are the different clip spaces and the different window co-ordinates, both of which are investigated in the book chapter. Hope that helps.

Edited by haegarr

Share this post


Link to post
Share on other sites

Thanks you for the input,

 

I have since further investigated the problem, but first some heads up. My matrices are already in row major ordering, I have already explicitely set that in DirectX11, and OpenGL seems to be able to work with it. Furthermore, the multiplication inversion still has to happen for some reason, otherwise I a funny looking vertex soup. I belive this is due to the fact that I multiply my viewprojection-matrix with the world-matrix in shader:

out.vPos = mul(in.vPos, mul(mWorld, mViewProj));

// translates to this in GLSL:
out.vPos = (mViewProj * mWorld) * in.vPos;

I really don't have any clue why this is necessary though, since I'm using row major ordering in both cases. Any ideas whats the reason behind this?

 

Furthermore, the reason why the m22-invert was working and I would get upside-down geometry otherwise is actually pretty simple: I didn't flip the vertical texture coordinate in my sprite class, which resulted in the final result of all my renderings to be upside down. I didn't really look that much into it in the first place, but that was also the reason why I had (almost) no problems with triangle winding order, the manual flipping of the geometry in the view-matrix also changed the triangulation. I now flipped the vertical texture-coordinates in the sprite, removed the view-matrix-manipulation, and switched the cull-order in respect when using OpenGL4. This now produces the same visual result as bevor, minus the culling-order problem in my water, which is definately a plus.

 

Still, this leaves me with even more problems...

 

So as I mentioned I had to flip the texture coordinate in the sprite class. I already did that before for my fullscreen-quads, it is necessary for them to render correctly in OpenGL. Why? I belive this is the main reason for all the problems I have left (CSM still doesn't work, water-reflections go all ape-s***). I think I have heard something that OpenGL stores the textures in a different way then direct-x (upside down, if I am correct), but why do I have to change the texture-coordintes to reflect this? And is there something I can do to combat this, except manually flipping the texture coordinates wherever they are used (which is really a pain, especially when they are e.g. calculated directly in the shader), maybe something that tells OpenGL to change its texture storage or something like that?

 

Here is what I mean, the fullscreen quad with the changes I had to make for OpenGL (first two floats are position in screen space, last two texture coordinates):

// DirectX
const SCREEN_QUADVERTEX quadVertices[] =
{
    { -1.0f, 1.0f, 0.0f, 0.0f },
    { 1.0f, 1.0f, 1.0f, 0.0f },
    { 1.0f, -1.0f, 1.0f, 1.0f },
    { -1.0f, -1.0f, 0.0f, 1.0f }
};

// OpenGL:
const SCREEN_QUADVERTEX quadVertices[] =
{
	{ -1.0f, -1.0f, 0.0f, 0.0f },
	{ 1.0f, -1.0f, 1.0f, 0.0f },
	{ 1.0f, 1.0f, 1.0f, 1.0f },
	{ -1.0f, 1.0f, 0.0f, 1.0f }
};

Any ideas?

Share this post


Link to post
Share on other sites

However, this was a total quess (I'm still quite surprised it works), and there are still occasional problems, like right now I'm trying to solve a complete f***-up in my cascaded shadow maps in opengl.

Probably because OpenGL normalizes to the depth range -1 to 1 whereas Direct3D uses NDC’s from 0 to 1.
Not only does this mess up shadows, you are likely only using half the range of the depth buffer with the way you are creating your projection matrix.


L. Spiro

Share this post


Link to post
Share on other sites


Probably because OpenGL normalizes to the depth range -1 to 1 whereas Direct3D uses NDC’s from 0 to 1.
Not only does this mess up shadows, you are likely only using half the range of the depth buffer with the way you are creating your projection matrix.

 

Thats surely a problem I'll tackle soon, but it isn't what causes this. I was right, it is the same thing with the texture coordinates. In the cascaded shadow map shader, the texture coordinates are calculated by multiplying the position with the light view matrix. The depth is then sampled from the depth-map (all cascades in one):

float depth = SampleLOD(Shadow, 
	float2( 
		vShadowTexCoord.x + (float(x) * vBorderPadding.w) , // w => native texel size 
		vShadowTexCoord.y + (float(y) * vBorderPadding.x) // x => texelsize 
		), 0);

Inverting the y-coordinate does the trick again:

float depth = SampleLOD(Shadow, 
	float2( 
		vShadowTexCoord.x + (float(x) * vBorderPadding.w) , // w => native texel size 
		1.0f - (vShadowTexCoord.y + (float(y) * vBorderPadding.x)) // x => texelsize 
		), 0);

This is really everywhere, thats also the reason I had to reverse the texture coordinates manually in the application for the fullscreen-quad and the sprite. I also mirrored the textures from the filesystem when loading them with FreeImage, which makes normal model texcoordinates work. Now, is there any way to solve this? The only thing I can think of is parsing all Sample-functions to

Sample(float2(vTex.x + vTex.x, 1.0f) - vTex));

in OpenGL, which would write out to sampling from (vTex.x, 1.0f - vTex.y), but it comes down to more work in the shader, especially when the texcoordintes are declared like in my sample directly in the function. Any other ideas?

 


So as well as making sure you're using both row-major or both-column major in both D3D and GL, you also need to make sure that your math libraries are both following the column-vector convention or the row-vector convention. If you do that, then the shader code and matrix multiplication order will be exactly the same across both APIs.

 

Thats really strange, I am using the same (namely my own) math libary for both DX and OpenGL, as you can see in my first post ;)

It appears though, that my OpenGL defaults to column_major, since setting my uniform-blocks to

layout(row_major) unifom Stage
{
     mat4 mViewProj;
}

and reversing the mul-order to normal (as in DX), now at least renders SOMETHING, however its still far from correct. Now my sky is rendering sort of like a tube when looking down the x-axis and otherwise isn't at all (I can't show a screenshot since OpenGL doesn't let me). Thats the vertex-shader:

		out.vPos = float4(in.vPos, 1.0f);
			
		matrix mModWorld = mWorld;
		mModWorld[3].xyz = vCameraPos;
		
		matrix mWorldView = mul(mModWorld, mView);
		float3 vVertex = mul(out.vPos, mWorldView).xyz;
		
		out.vPos = mul(out.vPos, mul(mModWorld, mViewProj)).xyww;
		out.vPos.z *= 0.99999f;

The other models render mostly correct, except the skinned one. Sadly I can't show you too, but while the overall animation look is still correct, the individual triangles go all over the place - it looks kind of spiky. Heres that vertex shader:

float4 pos = float4(0.0f, 0.0f, 0.0f, 1.0f);
float3 norm = float3(0.0f, 0.0f, 0.0f);
float lastWeight = 0.0f;
int n = 1; // TODO: read in
float4 inPos = float4(in.vPos, 1.0f);
float4 vNormal = float4(normalize(in.vNrm), 1.0f);

//Blend vertex position & normal
for(int i = 0; i < n; ++i)
{
	lastWeight += in.vWeights[i];
	pos += in.vWeights[i] * mul(inPos, mPalette[int(in.vIndices[i])]);
	norm += in.vWeights[i] * mul(vNormal, mPalette[int(in.vIndices[i])]).xyz;
}
lastWeight = 1.0f - lastWeight;

pos += mul(inPos, mPalette[int(in.vIndices[n])]) * lastWeight;
norm += mul(vNormal, mPalette[int(in.vIndices[n])]).xyz * lastWeight;
pos.w = 1.0f;

out.vPos1 = mul(pos, mWorld);
out.vPos = mul(out.vPos1, mViewProj);

out.vNormal = normalize(mul(float4(normalize(norm), 0.0f), mWorld).xyz);

out.vTex0 = in.vTex0;

I mean, now that matrix layout, multiplication order, and the way that matrices are handled/passed in by the application are all equal, do you see anything (perhaps in those shaders) that can cause such strange behaviour?

Share this post


Link to post
Share on other sites

D3D shaders (HLSL) use column-major storage by default as well, just like GLSL. You've got to use "row_major float4x4 myMat;" or the options posted by imoogiBG above. Are you doing this in your working HLSL version?
 
What's the multiply with 0.99999f for - to make sure the sky never touches the far plane?
The vVertex variable in that code doesn't get used, is that right?
 
In the second code block, vNormal should have a w value of zero -- otherwise your normals will be affected by the translation row of the mPalette matrix!
Seeing that n is hard-coded to 1 for now, I'd simplify that shader as much as possible, just to reduce the amount of things that could be going wrong.

float4 inPos = float4(in.vPos, 1.0);
float4 vNormal = float4(in.vNrm, 0.0);
float3 pos = in.vWeights.x * mul(inPos, mPalette[int(in.vIndices.x)]).xyz;
float3 norm = in.vWeights.x * mul(vNormal, mPalette[int(in.vIndices.x)]).xyz;
out.vPos_ws = mul(float4(pos,1.0), mWorld);
out.vPos = mul(float4(out.vPos_ws.xyz,1.0), mViewProj);
out.vNormal = mul(float4(norm, 0.0f), mWorld).xyz;//normalize in the pixel shader
out.vTex0 = in.vTex0;

I haven't used GL for a while... is it possible that somehow when you update your uniform object / send the matrices to the shader, that the GL driver is somehow transposing them or modifying them in some way?

Share this post


Link to post
Share on other sites


...

This is really everywhere, thats also the reason I had to reverse the texture coordinates manually in the application for the fullscreen-quad and the sprite. I also mirrored the textures from the filesystem when loading them with FreeImage, which makes normal model texcoordinates work. Now, is there any way to solve this? ...

I assume you suffer from the window co-ordinate problem: The book excerpt (I already mentioned it above) tells this with the "present transform" in eq. 39.1 and 39.2 and the following explanation "Window Origin". It mentions three ways to overcome it, all with some kind of drawback, of course.

Share this post


Link to post
Share on other sites


D3D shaders (HLSL) use column-major storage by default as well, just like GLSL. You've got to use "row_major float4x4 myMat;" or the options posted by imoogiBG above. Are you doing this in your working HLSL version?

 

Yes, I have

#pragma pack_matrix( row_major )

at the top of all of my shaders.

 


What's the multiply with 0.99999f for - to make sure the sky never touches the far plane?

 

Yep, thats what its for. I get heavy z-fighting unless for that line.

 


The vVertex variable in that code doesn't get used, is that right?

 

Well, that gets used later on for atmospheric scattering calculation, but nothing that affects the vertex position at all.

 


In the second code block, vNormal should have a w value of zero -- otherwise your normals will be affected by the translation row of the mPalette matrix!

 

Oh, I already wondered why my lighting on that model was off. I'm sure I checked that though, very weird. Thanks anyways, crosses another thing off the list :D

 


I haven't used GL for a while... is it possible that somehow when you update your uniform object / send the matrices to the shader, that the GL driver is somehow transposing them or modifying them in some way?

 

Thats very unlikely, since I'm using uniform buffers, and I'm uploading the data arbitrarily - or is there something that OpenGL does by itself that might change odering here?

 


I assume you suffer from the window co-ordinate problem: The book excerpt (I already mentioned it above) tells this with the "present transform" in eq. 39.1 and 39.2 and the following explanation "Window Origin". It mentions three ways to overcome it, all with some kind of drawback, of course.

 

Yes, you are totally right, thats the problem, at least with the reading in shader. I partially-countered this at first by inverting the coordinates for the fullscreen-pass, but that left me with even more problems. I'm now using step 2 by inverting the y-texture coordinate in shader, also I have to adjust the CPU-access of textures to account for the fact that textures are now stored upside down in regards.

 

Now all thats left is the vertex-transform problem, technically it is working with the old setting of reversing the multiplication order, but I sure would like to have it the right way, and know what this doesn't work in the first place...

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Advertisement
  • Popular Now

  • Similar Content

    • By reenigne
      For those that don't know me. I am the individual who's two videos are listed here under setup for https://wiki.libsdl.org/Tutorials
      I also run grhmedia.com where I host the projects and code for the tutorials I have online.
      Recently, I received a notice from youtube they will be implementing their new policy in protecting video content as of which I won't be monetized till I meat there required number of viewers and views each month.

      Frankly, I'm pretty sick of youtube. I put up a video and someone else learns from it and puts up another video and because of the way youtube does their placement they end up with more views.
      Even guys that clearly post false information such as one individual who said GLEW 2.0 was broken because he didn't know how to compile it. He in short didn't know how to modify the script he used because he didn't understand make files and how the requirements of the compiler and library changes needed some different flags.

      At the end of the month when they implement this I will take down the content and host on my own server purely and it will be a paid system and or patreon. 

      I get my videos may be a bit dry, I generally figure people are there to learn how to do something and I rather not waste their time. 
      I used to also help people for free even those coming from the other videos. That won't be the case any more. I used to just take anyone emails and work with them my email is posted on the site.

      I don't expect to get the required number of subscribers in that time or increased views. Even if I did well it wouldn't take care of each reoccurring month.
      I figure this is simpler and I don't plan on putting some sort of exorbitant fee for a monthly subscription or the like.
      I was thinking on the lines of a few dollars 1,2, and 3 and the larger subscription gets you assistance with the content in the tutorials if needed that month.
      Maybe another fee if it is related but not directly in the content. 
      The fees would serve to cut down on the number of people who ask for help and maybe encourage some of the people to actually pay attention to what is said rather than do their own thing. That actually turns out to be 90% of the issues. I spent 6 hours helping one individual last week I must have asked him 20 times did you do exactly like I said in the video even pointed directly to the section. When he finally sent me a copy of the what he entered I knew then and there he had not. I circled it and I pointed out that wasn't what I said to do in the video. I didn't tell him what was wrong and how I knew that way he would go back and actually follow what it said to do. He then reported it worked. Yea, no kidding following directions works. But hey isn't alone and well its part of the learning process.

      So the point of this isn't to be a gripe session. I'm just looking for a bit of feed back. Do you think the fees are unreasonable?
      Should I keep the youtube channel and do just the fees with patreon or do you think locking the content to my site and require a subscription is an idea.

      I'm just looking at the fact it is unrealistic to think youtube/google will actually get stuff right or that youtube viewers will actually bother to start looking for more accurate videos. 
    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
  • Advertisement