• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Aleks Le

Large matrix Inverse.

6 posts in this topic

Hello, i need help in implementing large matrix decomposition. 
i will be using a 9 by 9 matrix.

i am using directxMath as my matrix manipulation/calculation class, but it operates only with 4x4 Matrices.

Any chance anyone has a simple solution for this? or at least simplified implementation.

 

I did not really understand the Gauss-Jordan method. i found an example with a 3x3 matrix, but i could not really get my head around how to implement it on a bigger matrix...

 

Then there is a method Inverse of a Matrix using Minors, Cofactors and Adjugate, which looked like a nightmare.
Any help appreciated , thanks!

0

Share this post


Link to post
Share on other sites

I second Hodgman's advice of using eigen. I've used it for finite element methods which use huge matrices and It's a great tool for those kinds of problems. However, if you really want to implement your own matrix factorization techniques, look into using things like LU decomposition, QR decomposition, Cholesky decomposition, or singular value decomposition. There are many techniques out there to solve matrix problems, but usually it's helpful to know what kinds of problems you want to solve or what kinds of matrices you will encounter so you can pick the appropriate technique.

 

I think the main thing is to realize that, odds are, you're doing something that someone's probably written a better, faster library for. If you want to do it just to learn the factorization techniques, by all means try it out.

Edited by cadjunkie
0

Share this post


Link to post
Share on other sites

For Gaussian Elimination I found a teaching I appreciated in Essential Mathematics by Van Verth. They also provide source code for an implementation for general N by N matrices in C++. Gauss-Jordan is just a small extension to Gaussian Elimination where you augment the identity and run elimination: http://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix

 

As mentioned by others there are other ways to solve larger matrix problems which may be computationally more efficient than just brute force Gaussian Elimination.

Edited by Randy Gaul
0

Share this post


Link to post
Share on other sites

There's not just the efficiency at stake here, but the accuracy of the result, which really depends on the matrix itself. Without knowing any specifics about the matrix you're trying to invert or the problem that generates the matrix, you'll have to watch out for ill-conditioned matrices (where the condition number is high). You might have implemented a method like Gaussian elimination correctly, but the result is still garbage because the matrix itself is bad, so you might need a more accurate method.

 

Speaking to efficiency, Gaussian elimination isn't the fastest method for inverting a matrix. If you're trying to do this for a game, LU decomposition is probably a good starting point.

0

Share this post


Link to post
Share on other sites

Do you really need a matrix inverse function? Most numerical linear algebra problems can be solved without explicitly computing the inverse.

 

LU decomposition is probably the most efficient way, but it is not as numerically stable as a QR matrix inversion, which is backwards-stable. I would avoid gaussian elimination because it is less stable.

2

Share this post


Link to post
Share on other sites
Gauss-Jordan elimination is nice and runs in O(n^2) time, but implementation can be tricky with row exchanges and all, plus it's only somewhat parallel programming friendly, if you're tapping into GPU resources.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0