• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
KaiserJohan

OpenGL
Shadowsampler comparison

5 posts in this topic

Doing cascaded shadow mapping, and I need some confirmation I am doing the right thing. The shadow mapping works (mostly) but on a few angles the shadows vanish.

 

The sampler is setup like this:

 

GLCALL(glGenSamplers(1, &mTextureSampler));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE));
GLCALL(glBindSampler(OpenGLTexture::TEXTURE_UNIT_SHADOW_DIRECTIONAL, mTextureSampler));

I do depth comparison rather than distance comparison; my depth textures thus contain depth values.

 

vec4 projCoords = UnifDirLightPass.mVPMatrix[index] * vec4(worldPos, 1.0);                                                  
projCoords.w    = projCoords.z - DEPTH_BIAS;                                                                                
projCoords.z    = float(index);                                                                                             
float visibilty = texture(unifShadowTexture, projCoords);                                                                   


float angleNormal = clamp(dot(normal, UnifDirLightPass.mLightDir.xyz), 0, 1);                                               


fragColor = vec4(diffuse, 1.0) * visibilty * angleNormal * UnifDirLightPass.mLightColor;                                    

"unifShadowTexture" is of type "sampler2DarrayShadow", and "UnifDirLightPass.mVPMatrix[]" contains the bias * lightProj * lightView matrix for each split.

 

 

1. By having MIN/MAG filtering to GL_LINEAR, shouldn't I also have visibility = 0.5 for some samples? All I see is either 0.0 or 1.0.

 

2. Is the comparison in texture() valid? I believe I read somewhere that depth values aren't stored linearly, does this create a problem when I try to compare it against bias * lightProj * lightView * worldPosition?

 

3. For what reason would you use distance comparison (= writing the squared distance to the depth texture) over depth comparison for shadow mapping? It just seems like extra computations?

 

4. I am using shadow samplers, which gives me 0.0 or 1.0 values. How can I accomplish soft shadows with this for directional and point lights with such binary values to work with?

 

5. Why would you not use shadow samplers over normal samplers in shadow mapping?

 

Thanks

Edited by KaiserJohan
0

Share this post


Link to post
Share on other sites

1. By having MIN/MAG filtering to GL_LINEAR, shouldn't I also have visibility = 0.5 for some samples? All I see is either 0.0 or 1.0.

The result of the texture sampler (you have a shadow sampler which do a depth comparision) is either in shadow or not in shadow (use PCF or other fitlerings to get soft shadows). The linear filtering is used to get the right depth comparision value, but the final result is only the binary result of the comparision of the filtered depth value and your reference value.

 

 

 


4. I am using shadow samplers, which gives me 0.0 or 1.0 values. How can I accomplish soft shadows with this for directional and point lights with such binary values to work with?

To create soft  shadows , you can't use standard texture filtering methods (eg linear filtering), they will not really work. An often used approach is, to sample multiple shadow samples and calculate the shadow values yourself (eg PCF), I use ie 12-24 samples per rendered pixel to soften my shadows in my engine. Look out for hardware supported filtering too (again PCF).

 

 

5. Why would you not use shadow samplers over normal samplers in shadow mapping?

Because the hardware might be optimize to do the comparision of the shadow values, and the hardware could support already some degree of PCF to soften your shadows. In comes all down to better out-of-the-box hardware support.

Edited by Ashaman73
1

Share this post


Link to post
Share on other sites

1. By having MIN/MAG filtering to GL_LINEAR, shouldn't I also have visibility = 0.5 for some samples? All I see is either 0.0 or 1.0.

The result of the texture sampler (you have a shadow sampler which do a depth comparision) is either in shadow or not in shadow (use PCF or other fitlerings to get soft shadows). The linear filtering is used to get the right depth comparision value, but the final result is only the binary result of the comparision of the filtered depth value and your reference value.

I'm not sure about in GL, but this is actually how you enable hardware-accelerated PCF in D3D. The comparison happens first, on 4 unfiltered depth values, and then those 0/1 comparison results are linearly filtered.

0

Share this post


Link to post
Share on other sites

Is there no way to increase the samples used for hardware-accelerated PCF? It still looks very blocky with GL_LINEAR for OpenGL. Doing 12 samples software-style, does that mean 12 texture lookups? sounds expensive?

0

Share this post


Link to post
Share on other sites

Doing 12 samples software-style, does that mean 12 texture lookups?

You can use branching to your benefit. First make a quick test with 4 lookups, if all are either inside or outside of the shadow, you can mark the pixel as shadowed/unshadowed. If you got a mixed result, just look up X more shadow texels. The benefit comes from how GPUs work (atleast some, depends on hardware). GPU often group the processing units into wavefronts, cells whatever, which process multiple input data as single process (they do the same work at the same time). This is a reason, that branching hurts sometimes, because if some units of this group needs to do something else, the rest of the group need to wait and the total amount of processing time of the whole group increases.

 

Nevertheless, in our case, we want to optimize from, lets say 20 texel to just 4 texel access (sometimes). That is, if just one unit of a wavefront hits a mixed shadowed result, all pixels need the same (worst case) time. But if all unit just need 4 texel accesses, you suddently save a lot of processing time for this wavefront. A pixel wavefront eg has a 8x8 block size, thought this really depends on the hardware architecture. And the probabilty, that a 8x8 block is completly inside or outside the shadow , is quite high. Instead of lets say 20 texel access for the worst case scenario, you suddenly have an average case of ~12 texel access (assumption 50% hit rate => 4 + 16*50%).

 

The benefit:

If you work on a console, you should have access to detailed GPU archtecture information and can utilize it accordingly. If you work on the PC with unknown hardware, just build in an option which let you choose your shadow smoothness (from 1 sample up to 48 samples) and the user is able to decide himself which is best (performance vs quality).

Edited by Ashaman73
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By mapra99
      Hello

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

      Thanks!
    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
  • Popular Now