• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

Deferred Depth Reconstruction

3 posts in this topic

Hi All,


I am porting/migrating my pipeline from forward to deferred rendering because I want precomputed atmospheric scattering. If I do not learn how to achieve the technique I will never die a happy man (and vice versa smile.png). The goal is:




The paper with it is interesting reading as is prolands source code example, however prolands demo does not actually use a GBuffer so I need to blend their high level behaviour from this DX port to achieve the effect in GLSL 330.


I am binding my render buffer as a texture (24bit 8 bit stencil), I can read and draw it to a quad on screen, I know that the none linear depth values it writes are valid and my shader/model binding process is tried and true (right handed). My current goal is to establish all the fiddly unpleasant transforms required to get from GBuffer post processing exposed and to better understand the most practical way to handle transforms around depth. My first stop was the realisation that if I can get the post process surfacePos below I will be home free as all the lighting is similar it is just the sources used to lookup values that have changed.


Here is the code I am attempting to port, the transforms through various coordinate space I have a loose grasp of, but the part I do not get is how the SV_POSITION translates in GLSL. Changing the gl_FragDepth to try and mimic screen space changes ends badly.


GBUFFER GEOMETRY___________________________________________________


struct VS_OUT {

float4 posH : SV_POSITION;

float3 posW : POSITION;

float3 tangent : TANGENT0;

float3 bitangent : TANGENT1;

float2 texC : TEXCOORD0;





Vertex shader snippet of interest to position:


output.posH = mul(float4(posWorld, 1.0f), g_viewProj);

output.posH.z = output.posH.z * output.posH.w * g_invFarPlane;


POST PROCESSING_____________________________________________________


Vertex Shader

static const float EPSILON_ATMOSPHERE = 0.002f;

static const float EPSILON_INSCATTER = 0.004f;


Texture2D g_depth;

Texture2D g_color;

Texture2D g_normal;

Texture2D g_texIrradiance;

Texture3D g_texInscatter;

float3 g_cameraPos;

float3 g_sunVector;

float4x4 g_cameraWorld;

float4 g_frustumFar[4];

float4 g_frustumNear[4];


struct VS_IN {

float3 posL : POSITION;

float2 texC : TEXCOORD0;

uint index : TEXCOORD1;



struct VS_OUT {

float4 posH : SV_POSITION;

float2 texC : TEXCOORD0;

float3 nearToFar : TEXCOORD2;

float3 cameraToNear : TEXCOORD3;



VS_OUT VS(VS_IN input) {

VS_OUT output;

output.posH = float4(input.posL,1.0f);

output.texC = input.texC;

float3 frustumFarWorld = mul(float4(g_frustumFar[input.index].xyz, 1.0f), g_cameraWorld).xyz;

float3 frustumNearWorld = mul(float4(g_frustumNear[input.index].xyz, 1.0f), g_cameraWorld).xyz;

output.cameraToNear = frustumNearWorld - g_cameraPos;

output.nearToFar = frustumFarWorld - frustumNearWorld;

return output;



Pixel Shader:


// reconstructing world space postion by interpolation

float depthVal = g_depth.SampleLevel( PointSamplerClamp, input.texC, 0 ).r;

float3 surfacePos = g_cameraPos + input.cameraToNear + depthVal * input.nearToFar;


// obtaining the view direction vector

float3 viewDir = normalize(input.nearToFar);


  • Can anyone confirm how the PosH value is impacting the encoding of the depth buffer and what the openGL equivalent would be?
  • Can anyone tell me the real values of those vec4[4] fustrums and where they can be derived from? I have no problem adding an index to my screen quad to link to it or building a clipping frustrum near or far plane. The problem I have is that it is glossed over and I am worried my deductive reasoning will be slower than the my goal. I really want my GBuffer ready to start assembling this post processing effect before the Easter holiday is done.


I believe g_cameraWorld is the world rotation of the camera.


I have gone through all of the following resources to try and understand how people are handling this process:


So far I have had no success reconstructing raw depth by blending these snippets input on the problem or testing them in relative isolation, I have a feeling that everyone is tampering with depth output in the geometry buffer but its not very clear in many of the snippets I have found exactly what parameters they are using to do this and why. I am going to try and focus on filling in the gaps from the model above because the resources above suggest it is still an efficient mechanism for solving reconstructing the desirable spaces in most post processes.


Does anyone have a tutorial where this reconstruction process is applied as a holistic piece of functioning code? I would love to see the implementation for these frustum shapes on the near and far plane. I just need to see a proper GBuffer pipeline using depth to reconstruct position and linear depth so I can reverse engineer and inspect its properties to understand the bugs in my own code and move on.


I really cannot wait to play with that effect. If I get my shaders to reconstruct from depth I will post them up and describe the parts that have as of yet confounded me.


I welcome any input.


Many Thanks,

Enlightened One


Share this post

Link to post
Share on other sites

I solved a bug in one of the references where they multiply 2 * zNear * zFar when they only need 2 * zNear in part of the equation, this got me seeing linearised space from a none linear depth in the real depth buffer. I reread the details of the precomputed atmospheric scattering paper and concluded that the SVPosition and Position allow the real position and clip space depth? to be set independently. Although I might have really screwed up in my interpretation of their duality.


Ok so I am attempting to understand how to force linear depth in the hardware Depth buffer to bring myself closer to the DX PCAS paper, the goal is linear depth in the real depth buffer with the world space position and by extension the view direction cheaply solved in the pixel shader from this depth.


Right now I am studying Yours3!f's description to progress:


I am concerned he is using a separate texture from the real depth buffer... if he is using something to map to the SV_Poistion equivalent he is not hinting at it.


This article is interesting but just too abstract for me to apply:


Off of it is a sample for "attack the depth buffer", it is a great sample but their pixel shader code has:

float2 DepthCS      : DEPTH;
float4 PositionCS   : SV_POSITION;
Again it seems not understanding the GL version of clip space is hurting me.


To better qualify my FBO I have 24/8 depth/stencil buffer, normal 32 and colour 32, I believe that should be enough.


Share this post

Link to post
Share on other sites

My goodness it worked!



#version 330
in vec3 inPos;
in vec4 inCol;
//model being tested has no normals yet
uniform mat4 inverseProjectionMatrix;
uniform mat4 wvpMatrix;
uniform mat4 modelViewMatrix;
out vec3 pass_colour;
out vec4 worldPosition;
out float depth;
const float far_plane_distance = 15000.0f;
void main(void) {
gl_Position = wvpMatrix * vec4(inPos, 1);
worldPosition = gl_Position;
vec4 viewSpacePos = modelViewMatrix * vec4(inPos, 1);
depth = viewSpacePos.z / - far_plane_distance;
pass_colour = inCol.xyz;
#version 330
in vec3 pass_colour;
in vec4 worldPosition;
in float depth;
layout (location = 0) out vec4 ColourOut;   
layout (location = 1) out vec4 NormalOut;
layout (location = 2) out vec4 PosOut;     
void main(void) {
ColourOut = vec4(pass_colour, 1);
NormalOut = vec4(0.5,0.5,0.5,1); //dummy values please ignore
PosOut.xyz = worldPosition.xyz; //intending to use this to compare to the reconstructed positions as soon as I have either working smile.png
PosOut.w = 1;
gl_FragDepth = depth;


Then just sampling the depth:

    d = texture2D(texture_depth, pass_texCoord).x;
  DepthOut = vec4(d, d, d, 1.0);
My old linearisation from none linear depth buffer approach when using this is redundant as the depth texture is linear. Following on from his approach I expect I will get the desired view space positions necessary to get around.
I dug out this:
It suggests what I am doing is a recipe for performance disaster, however "gl_Position.z = viewSpacePos.z / - far_plane_distance;" simply causes depth testing to fail.
Interestingly but obviously I get less close banding from the none linear depth calculation, reconstructing linear depth without storing it must be the way forward.
I am about to find out if I stick with post GBuffer linear depth reconstruction can I still reconstruct the surface position using Yours3!f's method? more challenging will be to get the viewDir from this data.
Edited by EnlightenedOne

Share this post

Link to post
Share on other sites

Looks like I can get to both view and world space if I plug my derived linear depth into:



Based on the attack the depth buffer pixel shader:

    float3 viewRay = float3(Input.PositionVS.xy / Input.PositionVS.z, 1.0f);
    float3 positionVS = LinearizedDepth(depthTextureForPizel) * viewRay;

Where positionVS is the world view project multiplied vertex as per standard transform, Yours3!f's method includes additional transforms that may be required for OpenGL but I haven't tested that yet.


The real work will be getting to world space without matrix multiplication per pixel that is my current task.


Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now