• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
lucky6969b

Can you quickly visualize how a quaternion would look on top of your head?

9 posts in this topic

If you see a quaternion of a certain value, can you quickly determine how this orientation would look on top of your head? If you can, how can you do that handily? Thanks Jack
1

Share this post


Link to post
Share on other sites

I recognise a few specific quaternion values (90 degree rotations in various axis, etc), but I couldn't tell you what direction an arbitrary-value quaternion is facing.

 

I'm sure some people can, but it's beyond me :)

0

Share this post


Link to post
Share on other sites

Quaternions.

 

All I can say is thank God for Quaternion.eulerAngles (With unity anyway)

0

Share this post


Link to post
Share on other sites

 


around the axis defined by its imaginary part

 

Which is equally cumbersome to get, since you have to divide first by the sin of half the angle you got... I seriously recommend having a little mobile app to convert from quaternions to euler or something... for example: https://play.google.com/store/apps/details?id=quaternion.angel

 

 

Unless you brain can only work with unit-length vectors, you don't need to divide by anything.

2

Share this post


Link to post
Share on other sites

As you explained, we can determine the angles of rotation around an

imaginary axis by looking at the real part of the quaternion,

can we also easily work out the axis in the imagainary part?

Thanks

Jack

0

Share this post


Link to post
Share on other sites

Ha ha, I don't understand why humans, like me,  always like to run circles around things.

Thanks everybody for participation in this discussion.

Sometimes I really want to work out quaternions quickly without relying on calculators,

this makes things way quicker

Thanks

Jack

0

Share this post


Link to post
Share on other sites

An axis can be defined by any non-zero vector, not just the unitary ones. You do not need to convert the imaginary part at all.. I can clearly take that imaginary part and normalize it if I need/want, but it isn't necessary to do so. If I look at my original example I can say that the axis is in the X>0,Y>0,Z<0 octant and that the greater component is along the z-axis. This component is indeed more than twice the x-component and more than three times the y-component. I would probably draw this axis using the vector (3,2,-7.1).

0

Share this post


Link to post
Share on other sites

 

 


around the axis defined by its imaginary part

 

Which is equally cumbersome to get, since you have to divide first by the sin of half the angle you got... I seriously recommend having a little mobile app to convert from quaternions to euler or something... for example: https://play.google.com/store/apps/details?id=quaternion.angel

 

 

Unless you brain can only work with unit-length vectors, you don't need to divide by anything.

 

 

That's pretty much my case, but I see your point :P My mistake.

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0