• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
irreversible

Viscosity and volume mixing in fluid dynamics

3 posts in this topic

I've been working on a rather simple fluid dynamics implementation that I now wish to expand. I have my single-fluid vortices up and tracer particles following the velocity grid. However, I'm trying to figure out a way to create a mix of fluids that interact upon friction.

 

Since I'm not up to speed with the terminology, I'll just describe what I want in my own words: what I have in mind is a "non-particulate" (eg closed, fixed volume) flow map that always fills the entire region. Though it would be my next step, compressible fluids isn't something I outright need. So far as my knowledge goes, while the latter would be a solution, I'm not sure whether the answer in this case is somehow propagating the material type based on the density map or populating the entire chart with particles and making them all one unit in size.

 

Another thing I'm not entirely sure how to implement is shearing and fluid mixing based on viscosity differentials. Here's my test setup:

 

 

[attachment=22818:fluid dyanmics.jpg]

 

The screenshot is of a horizontally wrapping velocity grid where blue tones = left-moving and red tones = right-moving. Green = stationary. Color brightness denotes velocity, also shown by arrow lengths. The bright lines between the bands are the regions where flow directions cancel each other out, so shearing occurs as expected, but no mixing.

 

The reddish dots are tracer particles used to gauge flow.

 

Ideally I'd like to see adjacent bands start mixing at the boundary layer due to viscosity while none of the layers loses volume (eg the amount of material that each band comprises remains the same throughout the system). I suppose the closest example to this would be any horizontally closed system, such as a gas giant.

 

I'm looking for resources with less emphasis on the math and more on implementation (seeing as I'm not as mathematically well-endowed as I would like to be) - Googling has had me jump around from one place to another and it turns out finding good information isn't quite as straightforward as I would've hoped.

0

Share this post


Link to post
Share on other sites

The search term you need is multiphase and/or multicomponent flow. There is plenty of good information on this though you have to embrace the math, this is arguably the most challenging field of computational fluid dynamics. The maths is complicated, and the calculations involved are extremely intensive.

 

The simplest way I know of is to use SPH with van der waals forces hacked in. I say hacked, because strictly speaking this isn't the correct way, but its the easiest way to get a model that looks about right.

 

An added bonus is that most SPH implementations follow a weakly compressible assumption.

2

Share this post


Link to post
Share on other sites

Van der Vaal relies on a random facing real phenimena law. You realy should not relly on this in case of fast aproximantion. Though I have noidea what result you wish to simulate

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0