• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

tree traversal of LBVH with and without stack

0 posts in this topic


I have implemented a tilebased and clustered deferred shading pipeline and am currently profiling and optimizing.

I am constructing a LBVH for all the lightsources every frame from scratch.

I'm doing this like described here: http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

In short:

(1) compute a conservative AABB for all lights

(2) calculate Morton codes for each light

(3) sort the lights along their corresponding Morton codes

(4) construct a LBVH using a sparse tree representation


This works pretty well and uses all together 1 - 1.5 ms for up to 100 000 lights.

On the other hand the traversal of the LBVH consumes lots of time, primarily because I have to do this 2 times. 1st time to calculate the number of lights in each cluster, and the 2nd time after I have partitioned my indices texture to put the actual light indices into.


I have several different implementations for the traversal...

traversal with stack: http://pastebin.com/GZnzGrPw

stackless traversal: http://pastebin.com/4NE5UqVG


there are more variants to the stackless traversal (with less texture memory access) but I think they are not relevant for the time being.


My question is now, why is the stackless traversal faster (2 times as fast!) than the one with stack, even if there are AL LOT more texture memory reads. I figured the order in which the nodes are traversed is the same.

My theory goes as follows:

GPUs utilize fast context switches to gain performance. The stack (the 32 field array) uses up a lots of registers and the context switch is actually pretty slow. Although this is pure guessing an I have no proof what so ever. 


I tried to squeeze in as much info without bloating the post, so thanks to all those who have read up to this line biggrin.png

I'm very interested in your explanations as well.


Edit: I should have told you how the tree is represented in memmory...

It's a sparse tree representation with a texture holding the 2 children for the node N at the position N

The same with the parents, the parent of Node N is found by accessing the texture at position N

Edited by Wh0p

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0