• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By isu diss
      I'm following rastertek tutorial 14 (http://rastertek.com/tertut14.html). The problem is, slope based texturing doesn't work in my application. There are plenty of slopes in my terrain. None of them get slope color.
      float4 PSMAIN(DS_OUTPUT Input) : SV_Target { float4 grassColor; float4 slopeColor; float4 rockColor; float slope; float blendAmount; float4 textureColor; grassColor = txTerGrassy.Sample(SSTerrain, Input.TextureCoords); slopeColor = txTerMossRocky.Sample(SSTerrain, Input.TextureCoords); rockColor = txTerRocky.Sample(SSTerrain, Input.TextureCoords); // Calculate the slope of this point. slope = (1.0f - Input.LSNormal.y); if(slope < 0.2) { blendAmount = slope / 0.2f; textureColor = lerp(grassColor, slopeColor, blendAmount); } if((slope < 0.7) && (slope >= 0.2f)) { blendAmount = (slope - 0.2f) * (1.0f / (0.7f - 0.2f)); textureColor = lerp(slopeColor, rockColor, blendAmount); } if(slope >= 0.7) { textureColor = rockColor; } return float4(textureColor.rgb, 1); } Can anyone help me? Thanks.

    • By cozzie
      Hi all,
      As a part of the debug drawing system in my engine,  I want to add support for rendering simple text on screen  (aka HUD/ HUD style). From what I've read there are a few options, in short:
      1. Write your own font sprite renderer
      2. Using Direct2D/Directwrite, combine with DX11 rendertarget/ backbuffer
      3. Use an external library, like the directx toolkit etc.
      I want to go for number 2, but articles/ documentation confused me a bit. Some say you need to create a DX10 device, to be able to do this, because it doesn't directly work with the DX11 device.  But other articles tell that this was 'patched' later on and should work now.
      Can someone shed some light on this and ideally provide me an example or article on  how to set this up?
      All input is appreciated.
    • By stale
      I've just started learning about tessellation from Frank Luna's DX11 book. I'm getting some very weird behavior when I try to render a tessellated quad patch if I also render a mesh in the same frame. The tessellated quad patch renders just fine if it's the only thing I'm rendering. This is pictured below:
      However, when I attempt to render the same tessellated quad patch along with the other entities in the scene (which are simple triangle-lists), I get the following error:

      I have no idea why this is happening, and google searches have given me no leads at all. I use the following code to render the tessellated quad patch:
      ID3D11DeviceContext* dc = GetGFXDeviceContext(); dc->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST); dc->IASetInputLayout(ShaderManager::GetInstance()->m_JQuadTess->m_InputLayout); float blendFactors[] = { 0.0f, 0.0f, 0.0f, 0.0f }; // only used with D3D11_BLEND_BLEND_FACTOR dc->RSSetState(m_rasterizerStates[RSWIREFRAME]); dc->OMSetBlendState(m_blendStates[BSNOBLEND], blendFactors, 0xffffffff); dc->OMSetDepthStencilState(m_depthStencilStates[DSDEFAULT], 0); ID3DX11EffectTechnique* activeTech = ShaderManager::GetInstance()->m_JQuadTess->Tech; D3DX11_TECHNIQUE_DESC techDesc; activeTech->GetDesc(&techDesc); for (unsigned int p = 0; p < techDesc.Passes; p++) { TerrainVisual* terrainVisual = (TerrainVisual*)entity->m_VisualComponent; UINT stride = sizeof(TerrainVertex); UINT offset = 0; GetGFXDeviceContext()->IASetVertexBuffers(0, 1, &terrainVisual->m_VB, &stride, &offset); Vector3 eyePos = Vector3(cam->m_position); Matrix rotation = Matrix::CreateFromYawPitchRoll(entity->m_rotationEuler.x, entity->m_rotationEuler.y, entity->m_rotationEuler.z); Matrix model = rotation * Matrix::CreateTranslation(entity->m_position); Matrix view = cam->GetLookAtMatrix(); Matrix MVP = model * view * m_ProjectionMatrix; ShaderManager::GetInstance()->m_JQuadTess->SetEyePosW(eyePos); ShaderManager::GetInstance()->m_JQuadTess->SetWorld(model); ShaderManager::GetInstance()->m_JQuadTess->SetWorldViewProj(MVP); activeTech->GetPassByIndex(p)->Apply(0, GetGFXDeviceContext()); GetGFXDeviceContext()->Draw(4, 0); } dc->RSSetState(0); dc->OMSetBlendState(0, blendFactors, 0xffffffff); dc->OMSetDepthStencilState(0, 0); I draw my scene by looping through the list of entities and calling the associated draw method depending on the entity's "visual type":
      for (unsigned int i = 0; i < scene->GetEntityList()->size(); i++) { Entity* entity = scene->GetEntityList()->at(i); if (entity->m_VisualComponent->m_visualType == VisualType::MESH) DrawMeshEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::BILLBOARD) DrawBillboardEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::TERRAIN) DrawTerrainEntity(entity, cam); } HR(m_swapChain->Present(0, 0)); Any help/advice would be much appreciated!
    • By KaiserJohan
      Am trying a basebones tessellation shader and getting unexpected result when increasing the tessellation factor. Am rendering a group of quads and trying to apply tessellation to them.
      OutsideTess = (1,1,1,1), InsideTess= (1,1)

      OutsideTess = (1,1,1,1), InsideTess= (2,1)

      I expected 4 triangles in the quad, not two. Any idea of whats wrong?
      struct PatchTess { float mEdgeTess[4] : SV_TessFactor; float mInsideTess[2] : SV_InsideTessFactor; }; struct VertexOut { float4 mWorldPosition : POSITION; float mTessFactor : TESS; }; struct DomainOut { float4 mWorldPosition : SV_POSITION; }; struct HullOut { float4 mWorldPosition : POSITION; }; Hull shader:
      PatchTess PatchHS(InputPatch<VertexOut, 3> inputVertices) { PatchTess patch; patch.mEdgeTess[ 0 ] = 1; patch.mEdgeTess[ 1 ] = 1; patch.mEdgeTess[ 2 ] = 1; patch.mEdgeTess[ 3 ] = 1; patch.mInsideTess[ 0 ] = 2; patch.mInsideTess[ 1 ] = 1; return patch; } [domain("quad")] [partitioning("fractional_odd")] [outputtopology("triangle_ccw")] [outputcontrolpoints(4)] [patchconstantfunc("PatchHS")] [maxtessfactor( 64.0 )] HullOut hull_main(InputPatch<VertexOut, 3> verticeData, uint index : SV_OutputControlPointID) { HullOut ret; ret.mWorldPosition = verticeData[index].mWorldPosition; return ret; }  
      Domain shader:
      [domain("quad")] DomainOut domain_main(PatchTess patchTess, float2 uv : SV_DomainLocation, const OutputPatch<HullOut, 4> quad) { DomainOut ret; const float MipInterval = 20.0f; ret.mWorldPosition.xz = quad[ 0 ].mWorldPosition.xz * ( 1.0f - uv.x ) * ( 1.0f - uv.y ) + quad[ 1 ].mWorldPosition.xz * uv.x * ( 1.0f - uv.y ) + quad[ 2 ].mWorldPosition.xz * ( 1.0f - uv.x ) * uv.y + quad[ 3 ].mWorldPosition.xz * uv.x * uv.y ; ret.mWorldPosition.y = quad[ 0 ].mWorldPosition.y; ret.mWorldPosition.w = 1; ret.mWorldPosition = mul( gFrameViewProj, ret.mWorldPosition ); return ret; }  
      Any ideas what could be wrong with these shaders?
    • By simco50
      I've stumbled upon Urho3D engine and found that it has a really nice and easy to read code structure.
      I think the graphics abstraction looks really interesting and I like the idea of how it defers pipeline state changes until just before the draw call to resolve redundant state changes.
      This is done by saving the state changes (blendEnabled/SRV changes/RTV changes) in member variables and just before the draw, apply the actual state changes using the graphics context.
      It looks something like this (pseudo):
      void PrepareDraw() { if(renderTargetsDirty) { pD3D11DeviceContext->OMSetRenderTarget(mCurrentRenderTargets); renderTargetsDirty = false } if(texturesDirty) { pD3D11DeviceContext->PSSetShaderResourceView(..., mCurrentSRVs); texturesDirty = false } .... //Some more state changes } This all looked like a great design at first but I've found that there is one big issue with this which I don't really understand how it is solved in their case and how I would tackle it.
      I'll explain it by example, imagine I have two rendertargets: my backbuffer RT and an offscreen RT.
      Say I want to render my backbuffer to the offscreen RT and then back to the backbuffer (Just for the sake of the example).
      You would do something like this:
      //Render to the offscreen RT pGraphics->SetRenderTarget(pOffscreenRT->GetRTV()); pGraphics->SetTexture(diffuseSlot, pDefaultRT->GetSRV()) pGraphics->DrawQuad() pGraphics->SetTexture(diffuseSlot, nullptr); //Remove the default RT from input //Render to the default (screen) RT pGraphics->SetRenderTarget(nullptr); //Default RT pGraphics->SetTexture(diffuseSlot, pOffscreenRT->GetSRV()) pGraphics->DrawQuad(); The problem here is that the second time the application loop comes around, the offscreen rendertarget is still bound as input ShaderResourceView when it gets set as a RenderTargetView because in Urho3D, the state of the RenderTargetView will always be changed before the ShaderResourceViews (see top code snippet) even when I set the SRV to nullptr before using it as a RTV like above causing errors because a resource can't be bound to both input and rendertarget.
      What is usually the solution to this?
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 D3D11 WARP without swap-chain - LEAK?

This topic is 889 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi all!


We've had rendering on servers without GPUs (and without monitors) using DX11.0 WARP running just fine. Now that our loads have increased I noticed we run out of memory. I'm releasing all resources (mainly textures and buffers) but since we don't have any swap-chain (and hence no Present), I can't get to any other conclusion than that the resources are never actually released and linger in RAM forever, until we run out of memory. My theory is supported by similar behaviour observation with GPUs (from all vendors) where the RAM is actually freed only after a couple frames and captures by Windows Performance Recorder/Analyzer with WARP.


I tried ID3D11DeviceCtx::Flush and ClearState, both to no avail (as expected).


Can anyone comment on WARP without swap-chains? Can I render "forever" without running out of memory because I never present?


Thanks for any ideas!


EDIT: Here I see that calling Flush should help but I just don't believe it - it doesn't help me and my RAM usage never goes down.

Edited by pcmaster

Share this post

Link to post
Share on other sites

In D3D11 almost anything you delete is not actually deleted until you flush or present. The reason for this is the 'command buffer' that is being filled with commands may reference these resources and so anything deleted during command buffer creation is kept alive until the GPU has executed the command buffer. Resources are kept alive while they are bound to the pipeline, even if you release them and the ref-count says zero, if they are bound to the pipeline, they are still alive - ClearState solves this. So ClearState/Flush should make sure any resources that you believe you have deleted are actually deleted. If you still find resources alive it might be worth using the debug layers to see if there are objects alive at this point that you didn't expect.


WARP does use additional memory to optimize it's rendering, we typically hold onto surfaces if we think you are going to reuse them in the future (particularly resources in use that you call map / discard on) as this is faster than releasing them and then asking the OS for them again (and getting zero filled memory). We do limit this memory, and it will 'decay' over time, so it should not use too much and it should certainly not leak.



Share this post

Link to post
Share on other sites

Hi Andy!


I'm very well aware, I've implemented multiple command buffers submission and resource tracking on one of the consoles. Indeed, there we finally release deleted resources after a few frames, once we're sure GPU is done with them, as it's left to us, not the driver.


We don't have much Map/Write/Discard, certainly not the amount that would contribute to 10 GB over 1200 draw-calls. That was exactly what I feared would be double-buffered by the driver. But doesn't seem the case. We do have plenty of Map/Write/NoOverwrite though.


I added ID3D11Debug::ReportLiveDeviceObjects before and after release of textures and it does show exactly the difference, after the Release + Flush + ClearState they are gone from the ReportLiveDeviceObjects listing, however not from RAM (WPA and even TaskMgr confirm that).


So Flush + ClearState to no avail, so far sad.png

Edited by pcmaster

Share this post

Link to post
Share on other sites

Okay, I reduced it as much as I could and now I do only some rendering using immutable resources (and constant buffers) to a few render targets, then a few Map/NoOverwrite for a fullscreen quad and finally read back the render targets on CPU. At that point (first Map/Read), all the massive allocations happen. No Map/Discard at all.

Edited by pcmaster

Share this post

Link to post
Share on other sites

Hehe, my epic fail. There was indeed a leak on my side - forgotten release on a bunch of textures smile.png So now I believe WARP is fine and actually releases the memory smile.png

Edited by pcmaster

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement