• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By racarate
      Hey everybody!
      I am trying to replicate all these cool on-screen debug visuals I see in all the SIGGRAPH and GDC talks, but I really don't know where to start.  The only resource I know of is almost 16 years old:
      http://number-none.com/product/Interactive Profiling, Part 1/index.html
      Does anybody have a more up-to-date reference?  Do people use minimal UI libraries like Dear ImgGui?  Also, If I am profiling OpenGL ES 3.0 (which doesn't have timer queries) is there really anything I can do to measure performance GPU-wise?  Or should I just chart CPU-side frame time?  I feel like this is something people re-invent for every game there has gotta be a tutorial out there... right?
    • By Achivai
      Hey, I am semi-new to 3d-programming and I've hit a snag. I have one object, let's call it Object A. This object has a long int array of 3d xyz-positions stored in it's vbo as an instanced attribute. I am using these numbers to instance object A a couple of thousand times. So far so good. 
      Now I've hit a point where I want to remove one of these instances of object A while the game is running, but I'm not quite sure how to go about it. At first my thought was to update the instanced attribute of Object A and change the positions to some dummy number that I could catch in the vertex shader and then decide there whether to draw the instance of Object A or not, but I think that would be expensive to do while the game is running, considering that it might have to be done several times every frame in some cases. 
      I'm not sure how to proceed, anyone have any tips?
    • By fleissi
      Hey guys!

      I'm new here and I recently started developing my own rendering engine. It's open source, based on OpenGL/DirectX and C++.
      The full source code is hosted on github:

      I would appreciate if people with experience in game development / engine desgin could take a look at my source code. I'm looking for honest, constructive criticism on how to improve the engine.
      I'm currently writing my master's thesis in computer science and in the recent year I've gone through all the basics about graphics programming, learned DirectX and OpenGL, read some articles on Nvidia GPU Gems, read books and integrated some of this stuff step by step into the engine.

      I know about the basics, but I feel like there is some missing link that I didn't get yet to merge all those little pieces together.

      Features I have so far:
      - Dynamic shader generation based on material properties
      - Dynamic sorting of meshes to be renderd based on shader and material
      - Rendering large amounts of static meshes
      - Hierarchical culling (detail + view frustum)
      - Limited support for dynamic (i.e. moving) meshes
      - Normal, Parallax and Relief Mapping implementations
      - Wind animations based on vertex displacement
      - A very basic integration of the Bullet physics engine
      - Procedural Grass generation
      - Some post processing effects (Depth of Field, Light Volumes, Screen Space Reflections, God Rays)
      - Caching mechanisms for textures, shaders, materials and meshes

      Features I would like to have:
      - Global illumination methods
      - Scalable physics
      - Occlusion culling
      - A nice procedural terrain generator
      - Scripting
      - Level Editing
      - Sound system
      - Optimization techniques

      Books I have so far:
      - Real-Time Rendering Third Edition
      - 3D Game Programming with DirectX 11
      - Vulkan Cookbook (not started yet)

      I hope you guys can take a look at my source code and if you're really motivated, feel free to contribute :-)
      There are some videos on youtube that demonstrate some of the features:
      Procedural grass on the GPU
      Procedural Terrain Engine
      Quadtree detail and view frustum culling

      The long term goal is to turn this into a commercial game engine. I'm aware that this is a very ambitious goal, but I'm sure it's possible if you work hard for it.


    • By tj8146
      I have attached my project in a .zip file if you wish to run it for yourself.
      I am making a simple 2d top-down game and I am trying to run my code to see if my window creation is working and to see if my timer is also working with it. Every time I run it though I get errors. And when I fix those errors, more come, then the same errors keep appearing. I end up just going round in circles.  Is there anyone who could help with this? 
      Errors when I build my code:
      1>Renderer.cpp 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2039: 'string': is not a member of 'std' 1>c:\program files (x86)\windows kits\10\include\10.0.16299.0\ucrt\stddef.h(18): note: see declaration of 'std' 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2061: syntax error: identifier 'string' 1>c:\users\documents\opengl\game\game\renderer.cpp(28): error C2511: 'bool Game::Rendering::initialize(int,int,bool,std::string)': overloaded member function not found in 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.h(9): note: see declaration of 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.cpp(35): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(36): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(43): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>Done building project "Game.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========  
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Renderer.h" #include "Timer.h" #include <iostream> namespace Game { GLFWwindow* window; /* Initialize the library */ Rendering::Rendering() { mClock = new Clock; } Rendering::~Rendering() { shutdown(); } bool Rendering::initialize(uint width, uint height, bool fullscreen, std::string window_title) { if (!glfwInit()) { return -1; } /* Create a windowed mode window and its OpenGL context */ window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL); if (!window) { glfwTerminate(); return -1; } /* Make the window's context current */ glfwMakeContextCurrent(window); glViewport(0, 0, (GLsizei)width, (GLsizei)height); glOrtho(0, (GLsizei)width, (GLsizei)height, 0, 1, -1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glfwSwapInterval(1); glEnable(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glEnable(GL_TEXTURE_2D); glLoadIdentity(); return true; } bool Rendering::render() { /* Loop until the user closes the window */ if (!glfwWindowShouldClose(window)) return false; /* Render here */ mClock->reset(); glfwPollEvents(); if (mClock->step()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glfwSwapBuffers(window); mClock->update(); } return true; } void Rendering::shutdown() { glfwDestroyWindow(window); glfwTerminate(); } GLFWwindow* Rendering::getCurrentWindow() { return window; } } Renderer.h
      #pragma once namespace Game { class Clock; class Rendering { public: Rendering(); ~Rendering(); bool initialize(uint width, uint height, bool fullscreen, std::string window_title = "Rendering window"); void shutdown(); bool render(); GLFWwindow* getCurrentWindow(); private: GLFWwindow * window; Clock* mClock; }; } Timer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include <time.h> #include "Timer.h" namespace Game { Clock::Clock() : mTicksPerSecond(50), mSkipTics(1000 / mTicksPerSecond), mMaxFrameSkip(10), mLoops(0) { mLastTick = tick(); } Clock::~Clock() { } bool Clock::step() { if (tick() > mLastTick && mLoops < mMaxFrameSkip) return true; return false; } void Clock::reset() { mLoops = 0; } void Clock::update() { mLastTick += mSkipTics; mLoops++; } clock_t Clock::tick() { return clock(); } } TImer.h
      #pragma once #include "Common.h" namespace Game { class Clock { public: Clock(); ~Clock(); void update(); bool step(); void reset(); clock_t tick(); private: uint mTicksPerSecond; ufloat mSkipTics; uint mMaxFrameSkip; uint mLoops; uint mLastTick; }; } Common.h
      #pragma once #include <cstdio> #include <cstdlib> #include <ctime> #include <cstring> #include <cmath> #include <iostream> namespace Game { typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef float ufloat; }  
    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test

      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Instancing, and the various ways to supply per-instance data

This topic is 878 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

From the reading I've been doing, it seems like there are a few different ways to supply per-instance data while using instancing in OpenGL. I've tried a couple of these. Here is a rundown, as I understand it. With each example, I'll use the mvp matrix (modelViewProjection) as the per-instance item. I'm hoping that you can help correct any errors in my understanding.


Array Uniforms w/ gl_InstanceId



layout(location = 0) in vec4 pos;
uniform mat4 mvp[1024];


void main() {
    gl_Position = mvp*pos;

With this method, you're just declaring an array of mat4 as a uniform, and you're using gl_InstanceId to index that array. The main advantage of this method is that it's easy, because it's hardly different than the normal way of using uniforms. However, each element in the array is given its own separate uniform location, and uniform locations are in limited supply (as few as 1024).


Vertex Attributes with Divisor=1


OpenGL example:

#define MVP_INDEX 2


glBindBuffer(GL_ARRAY_BUFFER, mvpBuffer);
for (int i = 0; i < 4; ++i) {
    GLuint index = MVP_INDEX+i;    
    glVertexAttribPointer(index, 4, GL_FLOAT, GL_FALSE, sizeof(GLfloat)*16, (GLvoid*)(sizeof(GLfloat)* i * 4));
    glVertexAttribDivisor(index, 1);
glBindBuffer(GL_ARRAY_BUFFER, 0);

GLSL example:

layout(location = 0) in vec4 pos;
layout(location = 2) in mat4 mvp;


void main() {
    gl_Position = mvp*pos;

With this method, the mvp matrix just looks like a vertex attribute from the GLSL side of things. However, since a divisor of 1 was specified on the OpenGL side, there is only one matrix stored per instance, rather than one per vertex. This allows very clean access to a large number of matrices (as many as a buffer object can hold). You also get all of the advantages that other buffer objects have, such as streaming using orphaning or mapping strategies. However, each matrix uses four vertex attrib locations. There may be as few as 16 total vertex attrib locations available. If you plan on using a shader that requires multiple sets of UV coordinates, blend weights, etc., then you may not have enough vertex attrib locations to use this method.


So, I'm trying to find a method that will allow thousands of instances without using up precious vertex attrib locations. I am hoping that Uniform Buffer Objects or SSBOs will come to the rescue. I haven't yet attempted to use them for this purpose, nor have I found many examples of people online using them for this purpose. Maybe there is a reason for that. smile.png. So here's my current understanding of how it works. I would be much obliged if someone could read it over, and tell me where I'm wrong.


Uniform Buffer Objects


OpenGL example:

GLuint mvpBuffer;
// GenBuffers, BufferData, etc.
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mvpBuffer);
GLuint uniformBlockIndex = glGetUniformBlockIndex(myProgram, "mvpBlock");
glUniformBlockBinding(myProgram, uniformBlockIndex, 0);

GLSL example:

layout(row_major) uniform MVP {
    mat4 mvp;
} mvps[1024];

void main() {
    gl_Position = mvps[gl_InstanceId]*pos;

It seems like this could alleviate restrictions with attrib locations. However, you are limited by GL_MAX_UNIFORM_BLOCK_SIZE, which I believe includes each instance in the instance array. This can be as low as 64kB, which in our case would only allow for 1024 instances, which is no better than the first method.


Shader Storage Buffer Objects


This method would be essentially identical to the Uniform Buffer method, except the interface block type is buffer and you can use a lot more memory. You can also write to the SSBO from within the shader, but that is not necessary for this application. On the down side, the Wiki says that this method is slower than Uniform buffers. Again, I haven't tested this myself, so I may be mistaken about how this works.





Share this post

Link to post
Share on other sites
The Vertex Attribute method is the original, from GL2/D3D9 era hardware, so it's recommended if you want something that works everywhere.

Uniform variables and UBO's are themselves a hint to the driver that every instantiation of the shader (i.e. every pixel/vertex) will read every single byte of the uniform data. That hint is not true for instancing, so I wouldn't immediately choose it.

In between UBOs and SSBOs, there's another option -- storing the data in a texture or a VBO, and fetching from it be converting the instanceID into a texture coordinate.

In D3D10/11, buffers can be bound to shaders as "shader resource views". In GL3, it's pretty awkward -- you have to create a "buffer texture" (or is it a "texture buffer"?), which uses the storage from a VBO but lets you bind it to a texture slot...

In D3D11/GL4, you *can* use SSBO's/UAV's, but these are overkill unless the shader requires read-write access to the buffer.

Share this post

Link to post
Share on other sites

The Vertex Attribute method is the original, from GL2/D3D9 era hardware, so it's recommended if you want something that works everywhere.


Thanks! In practice, do you find the limit on vertex attrib locations to be a pain? At mimumum, it seems you'll want to pass in the world matrix, which will use four. From there, I suppose the wv and wvp matrices can be calculated in the shader, if needed, but it seems wasteful to calculate per-instance matrices on a per-vertex basis. So, suppose you pass those matrices in as vertex attributes. That would mean that 12 out of 16 vertex attrib locations are used just for transformation matrices. Positions, normals, and texcoords take up three more. That leaves only one more. If you want to do skinned animation, it seems like you'd have to fall back on calculating the additional per-instance matrices in the vertex shader.

Share this post

Link to post
Share on other sites
For skinning, you need a large array of matrices per instance, so it just won't work with the traditional method -- put them into a buffer (texture-buffer/SRV).

You can make the W matrix per-instance, and the VP matrix uniform. You then just have one extra matrix mul per vertex (pos*W*VP instead of pos*WVP). If you need the world position for shading, then it's not even an extra cost.

Share this post

Link to post
Share on other sites

It seems like this could alleviate restrictions with attrib locations. However, you are limited by GL_MAX_UNIFORM_BLOCK_SIZE

Yes you are... but not totally.


Your limit is specifically for the amount of memory it can be bound at that particular UBO slot. AFAIK 64kB for everything except AMD these days. The trick is that the buffer itself can be bigger, much bigger.


Taking in account that the expensive part here often is uploading the data (many tiny uploads == bad), you can allocate something like 1Mb, upload all your data there with a couple calls at most (ideally only one), then just call glBindBufferRange in-between drawcalls.


Not sure how AMD handles glBindBufferRange, but nVidia, in their presentations, said that glBindBufferRange its a super cheap call to make, and since GCN seems to have the upper hand on memory management, probably its cheap to do with AMD too. Adding to that, since you already pre-uploaded all (or most) of your data to the big buffer, the state changes in between the draw calls should be minimal.


EDIT: The memory you can bind to an UBO slot can be as low as 16kB actually. 64kB is a common limit, but not the one that the spec defines as minimum. I recall one Intel forum post that  asked why in D3D11 you can have 64kB for a constant buffer but in OpenGL you only had 16kB, only then the Intel driver team incremented the limit to 32kB. That was for Windows drivers, Linux Intel drivers apparently tend to have better support.

Edited by TheChubu

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement