• Advertisement
Sign in to follow this  

OpenGL BRDFs in shaders

This topic is 731 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I'm reading a book called Real Time Rendering (3rd edition) and the author expresses the BRDF function for non-area light sources:

zd1T8.png

 

1. What's the difference between irradiance and radiance? English isn't my first language and dictionaries fail me.

 

2. "... is the irradiance of a light source measured in a plane perpendicular to the light direction vector l" can someone explain this? How can a light quantity be measued in a plane?

 

3. I followed basic OpenGL books and tutorials and I never worked with these kind of stuff. Radiance and irradiance were never introduced in the shaders. Is this concept really needed?

Edited by Pilpel

Share this post


Link to post
Share on other sites
Advertisement

Thanks for the explanation. I'm so mad. This chapter is absolutely cancer.

Do you know any source that explains BRDFs better than this book? All I care about is shader code, really..

Edited by Pilpel

Share this post


Link to post
Share on other sites

If I had to recommend one book it'd probably be PBRT (click). If you just care about shader code you might aswell google for that. Plenty of code out there. Most notably the Unreal Engine 4 source code on GitHub (click).

 

My two cents about this: I remember spotting a bug in the PDF for their BRDF in their codebase so trying to decipher the math by looking at code is probably not the best way to tackle this. People make mistakes. Programmers make a lot of mistakes. The chance of running into something you don't understand simply because there's a mistake in there is much higher than for stuff that was written down on paper.

Share this post


Link to post
Share on other sites

All I care about is shader code, really..

I take that back, I was really mad.

I did, however, give up on the explanations from Real-Time Rendering. They are really hard for me to understand.

Also, it seems like the author was explaining PBR without saying it was PBR..?

 

I'm looking for better (easier) explanations about this topic, rather than the book yoshi_t mentioned. Any idea?

Edited by Pilpel

Share this post


Link to post
Share on other sites

 

All I care about is shader code, really..

I take that back, I was really mad.

I did, however, give up on the explanations from Real-Time Rendering. They are really hard for me to understand.

Also, it seems like the author was explaining PBR without saying it was PBR..?

 

I'm looking for better (easier) explanations about this topic, rather than the book yoshi_t mentioned. Any idea?

 

 

As a piece of advice, it might be better to work through the hard stuff if you want to understand BRDFs and PBR. You're going to hit a point where there's no way around the math and radiometry theory, and you're going to hit it fast.

 

You're entering a realm of graphics where there's no more training wheels, better get used to it sooner rather than later.

Share this post


Link to post
Share on other sites

 

I'm looking for better (easier) explanations about this topic, rather than the book yoshi_t mentioned. Any idea?

 

okay let's see....

 

Irradiance is the quantity of energy that is measured on a surface location incoming from all directions (that is mostly shown in literature as the letter E)

Now you may be confused and say "But hey if irradiance (E) is measured on a single location what's E_L then aka the irradiance measured on a surface perpendicular to L".

The irradiance perpendicular to L (E_L) is the amount of energy passing through a unit sized plane (don't get confused by this it's just something to make the measuring easier). You can think of it as the amount of energy the light source itself emits. Think of a light bulb emitting light with some amount of intensity into a direction. That is your E_L.

Radiance on the other hand is basically the same as irradiance (also remember radiance can be incoming or outgoing energy!) but not from all directions but only a limited or focused amount (think of a camera lens focusing light into a small amount of directions, that is the solid angle).

In the equation above it shows outgoing radiance (L_o) which is light reflecting from your surface location into a certain amount of directions.

 

I hope that is somewhat easier to understand...if it's still a little too hard to grasp here's the short version:

 

1. Irradiance = light energy on a single location from all incoming directions

?    ?Radiance = light energy on a single location from a small set of directions (solid angle)

    Solid Angle = small set of directions in 3D space (think of a piece of cake)

 

2. Irradiance measured on a plane perpendicular to the light direction = light flowing through a unit sized plane (for measurement sake) to basically tell you how much energy the light is emitting/transmitting

 

3. Pretty sure if you've done anything that involves light or texture color you've made use of those equations (even if you didn't know).

Radiometry is just a way to mathematically or physically explain / define those things

 

 

The problem with radiometry is often that the "basics" are confusing since they are already based on simplification or approximations of more advanced equations.

Maybe try to keep going and see if it starts to make more sense going further...

For example later on when they explain how irradiance is obtained by summing up incoming radiance over all directions it made more sense to me

Edited by lipsryme

Share this post


Link to post
Share on other sites

Thanks a lot!

 

I went back to the basics and I'm not sure if I understand the difference between E and E_L.

E is irradiance from all directions onto a (unit?) plane. E_L is irradiance onto a plane, when only measuring light from direction L?

Edited by Pilpel

Share this post


Link to post
Share on other sites

E is the irradiance measured on a surface location (in your shading that would be the pixel you shade on your geometry).

E_L is irradiance measured not on a surface location but on a unit plane. The L subscript tells you already that it is irradiance corresponding to the light source.

 

edit: What you wrote is correct, although it's kind of confusing to think about shading a surface location as measuring it on a plane. This plane is kind of imaginary but perpendicular to the normal vector at that location, hence the N dot L term is born to saturate the amount of light depending on the angle the light hits this plane.

 

Here are a few quotes from RealTimeRendering:

 

- "The emission of a directional light source can be quantified by measuring power through a unit area surface perpendicular to L. This quantity, called irradiance, is equivalent to the sum of energies of the photons passing through the surface in one second".

Note: He's talking about E_L here, irradiance perpendicular to the light source L.

 

- "Although measuring irradiance at a plane perpendicular to L tells us how bright the light is in general, to compute its illumination on a surface, we need to measure irradiance at a plane parallel to that surface..."

Note: He goes on to talk about how the N dot L factor is derived...

 

On page 103 you can see that irradiance E is equal to the irradiance E_L times the cosine angle between the surface normal N and the light direction L.

E = E_L * cos_theta_i

 

looking at the equation in your original post it now makes sense because it now translates the brdf into:

f(l,v) = outgoing_radiance / irradiance

aka the ratio between outgoing light into a small set of directions (in this case in the direction of our sensor/eye, which is vector V) and incoming light to this surface location (or rather a plane perpendicular to the surface normal N)

 

so finally to translate this into actual hlsl code your very simple light equation could look like this:

float3 E_L = light_intensity * light_color;
float cos_theta_i = saturate(dot(N, -L)); // negate L because we go from surface to light
float3 E = E_L * cos_theta_i;

// We actually output outgoing radiance here but since this is a very simplified/approximated BRDF 
// we can set this equal since we assume that diffuse light is reflected the same in all directions
return E;

which is the lambertian shading / BRDF :)

Edited by lipsryme

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Advertisement
  • Popular Now

  • Similar Content

    • By LifeArtist
      Good Evening,
      I want to make a 2D game which involves displaying some debug information. Especially for collision, enemy sights and so on ...
      First of I was thinking about all those shapes which I need will need for debugging purposes: circles, rectangles, lines, polygons.
      I am really stucked right now because of the fundamental question:
      Where do I store my vertices positions for each line (object)? Currently I am not using a model matrix because I am using orthographic projection and set the final position within the VBO. That means that if I add a new line I would have to expand the "points" array and re-upload (recall glBufferData) it every time. The other method would be to use a model matrix and a fixed vbo for a line but it would be also messy to exactly create a line from (0,0) to (100,20) calculating the rotation and scale to make it fit.
      If I proceed with option 1 "updating the array each frame" I was thinking of having 4 draw calls every frame for the lines vao, polygons vao and so on. 
      In addition to that I am planning to use some sort of ECS based architecture. So the other question would be:
      Should I treat those debug objects as entities/components?
      For me it would make sense to treat them as entities but that's creates a new issue with the previous array approach because it would have for example a transform and render component. A special render component for debug objects (no texture etc) ... For me the transform component is also just a matrix but how would I then define a line?
      Treating them as components would'nt be a good idea in my eyes because then I would always need an entity. Well entity is just an id !? So maybe its a component?
      Regards,
      LifeArtist
    • By QQemka
      Hello. I am coding a small thingy in my spare time. All i want to achieve is to load a heightmap (as the lowest possible walking terrain), some static meshes (elements of the environment) and a dynamic character (meaning i can move, collide with heightmap/static meshes and hold a varying item in a hand ). Got a bunch of questions, or rather problems i can't find solution to myself. Nearly all are deal with graphics/gpu, not the coding part. My c++ is on high enough level.
      Let's go:
      Heightmap - i obviously want it to be textured, size is hardcoded to 256x256 squares. I can't have one huge texture stretched over entire terrain cause every pixel would be enormous. Thats why i decided to use 2 specified textures. First will be a tileset consisting of 16 square tiles (u v range from 0 to 0.25 for first tile and so on) and second a 256x256 buffer with 0-15 value representing index of the tile from tileset for every heigtmap square. Problem is, how do i blend the edges nicely and make some computationally cheap changes so its not obvious there are only 16 tiles? Is it possible to generate such terrain with some existing program?
      Collisions - i want to use bounding sphere and aabb. But should i store them for a model or entity instance? Meaning i have 20 same trees spawned using the same tree model, but every entity got its own transformation (position, scale etc). Storing collision component per instance grats faster access + is precalculated and transformed (takes additional memory, but who cares?), so i stick with this, right? What should i do if object is dynamically rotated? The aabb is no longer aligned and calculating per vertex min/max everytime object rotates/scales is pretty expensive, right?
      Drawing aabb - problem similar to above (storing aabb data per instance or model). This time in my opinion per model is enough since every instance also does not have own vertex buffer but uses the shared one (so 20 trees share reference to one tree model). So rendering aabb is about taking the model's aabb, transforming with instance matrix and voila. What about aabb vertex buffer (this is more of a cosmetic question, just curious, bumped onto it in time of writing this). Is it better to make it as 8 points and index buffer (12 lines), or only 2 vertices with min/max x/y/z and having the shaders dynamically generate 6 other vertices and draw the box? Or maybe there should be just ONE 1x1x1 cube box template moved/scaled per entity?
      What if one model got a diffuse texture and a normal map, and other has only diffuse? Should i pass some bool flag to shader with that info, or just assume that my game supports only diffuse maps without fancy stuff?
      There were several more but i forgot/solved them at time of writing
      Thanks in advance
    • By RenanRR
      Hi All,
      I'm reading the tutorials from learnOpengl site (nice site) and I'm having a question on the camera (https://learnopengl.com/Getting-started/Camera).
      I always saw the camera being manipulated with the lookat, but in tutorial I saw the camera being changed through the MVP arrays, which do not seem to be camera, but rather the scene that changes:
      Vertex Shader:
      #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec2 aTexCoord; out vec2 TexCoord; uniform mat4 model; uniform mat4 view; uniform mat4 projection; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0f); TexCoord = vec2(aTexCoord.x, aTexCoord.y); } then, the matrix manipulated:
      ..... glm::mat4 projection = glm::perspective(glm::radians(fov), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); ourShader.setMat4("projection", projection); .... glm::mat4 view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); ourShader.setMat4("view", view); .... model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f)); ourShader.setMat4("model", model);  
      So, some doubts:
      - Why use it like that?
      - Is it okay to manipulate the camera that way?
      -in this way, are not the vertex's positions that changes instead of the camera?
      - I need to pass MVP to all shaders of object in my scenes ?
       
      What it seems, is that the camera stands still and the scenery that changes...
      it's right?
       
       
      Thank you
       
    • By dpadam450
      Sampling a floating point texture where the alpha channel holds 4-bytes of packed data into the float. I don't know how to cast the raw memory to treat it as an integer so I can perform bit-shifting operations.

      int rgbValue = int(textureSample.w);//4 bytes of data packed as color
      // algorithm might not be correct and endianness might need switching.
      vec3 extractedData = vec3(  rgbValue & 0xFF000000,  (rgbValue << 8) & 0xFF000000, (rgbValue << 16) & 0xFF000000);
      extractedData /= 255.0f;
    • By Devashish Khandelwal
      While writing a simple renderer using OpenGL, I faced an issue with the glGetUniformLocation function. For some reason, the location is coming to be -1.
      Anyone has any idea .. what should I do?
  • Advertisement