• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By Fadey Duh
      Good evening everyone!

      I was wondering if there is something equivalent of  GL_NV_blend_equation_advanced for AMD?
      Basically I'm trying to find more compatible version of it.

      Thank you!
    • By Jens Eckervogt
      Hello guys, 
       
      Please tell me! 
      How do I know? Why does wavefront not show for me?
      I already checked I have non errors yet.
      using OpenTK; using System.Collections.Generic; using System.IO; using System.Text; namespace Tutorial_08.net.sourceskyboxer { public class WaveFrontLoader { private static List<Vector3> inPositions; private static List<Vector2> inTexcoords; private static List<Vector3> inNormals; private static List<float> positions; private static List<float> texcoords; private static List<int> indices; public static RawModel LoadObjModel(string filename, Loader loader) { inPositions = new List<Vector3>(); inTexcoords = new List<Vector2>(); inNormals = new List<Vector3>(); positions = new List<float>(); texcoords = new List<float>(); indices = new List<int>(); int nextIdx = 0; using (var reader = new StreamReader(File.Open("Contents/" + filename + ".obj", FileMode.Open), Encoding.UTF8)) { string line = reader.ReadLine(); int i = reader.Read(); while (true) { string[] currentLine = line.Split(); if (currentLine[0] == "v") { Vector3 pos = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inPositions.Add(pos); if (currentLine[1] == "t") { Vector2 tex = new Vector2(float.Parse(currentLine[1]), float.Parse(currentLine[2])); inTexcoords.Add(tex); } if (currentLine[1] == "n") { Vector3 nom = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inNormals.Add(nom); } } if (currentLine[0] == "f") { Vector3 pos = inPositions[0]; positions.Add(pos.X); positions.Add(pos.Y); positions.Add(pos.Z); Vector2 tc = inTexcoords[0]; texcoords.Add(tc.X); texcoords.Add(tc.Y); indices.Add(nextIdx); ++nextIdx; } reader.Close(); return loader.loadToVAO(positions.ToArray(), texcoords.ToArray(), indices.ToArray()); } } } } } And It have tried other method but it can't show for me.  I am mad now. Because any OpenTK developers won't help me.
      Please help me how do I fix.

      And my download (mega.nz) should it is original but I tried no success...
      - Add blend source and png file here I have tried tried,.....  
       
      PS: Why is our community not active? I wait very longer. Stop to lie me!
      Thanks !
    • By codelyoko373
      I wasn't sure if this would be the right place for a topic like this so sorry if it isn't.
      I'm currently working on a project for Uni using FreeGLUT to make a simple solar system simulation. I've got to the point where I've implemented all the planets and have used a Scene Graph to link them all together. The issue I'm having with now though is basically the planets and moons orbit correctly at their own orbit speeds.
      I'm not really experienced with using matrices for stuff like this so It's likely why I can't figure out how exactly to get it working. This is where I'm applying the transformation matrices, as well as pushing and popping them. This is within the Render function that every planet including the sun and moons will have and run.
      if (tag != "Sun") { glRotatef(orbitAngle, orbitRotation.X, orbitRotation.Y, orbitRotation.Z); } glPushMatrix(); glTranslatef(position.X, position.Y, position.Z); glRotatef(rotationAngle, rotation.X, rotation.Y, rotation.Z); glScalef(scale.X, scale.Y, scale.Z); glDrawElements(GL_TRIANGLES, mesh->indiceCount, GL_UNSIGNED_SHORT, mesh->indices); if (tag != "Sun") { glPopMatrix(); } The "If(tag != "Sun")" parts are my attempts are getting the planets to orbit correctly though it likely isn't the way I'm meant to be doing it. So I was wondering if someone would be able to help me? As I really don't have an idea on what I would do to get it working. Using the if statement is truthfully the closest I've got to it working but there are still weird effects like the planets orbiting faster then they should depending on the number of planets actually be updated/rendered.
    • By Jens Eckervogt
      Hello everyone, 
      I have problem with texture
      using System; using OpenTK; using OpenTK.Input; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL4; using System.Drawing; using System.Reflection; namespace Tutorial_05 { class Game : GameWindow { private static int WIDTH = 1200; private static int HEIGHT = 720; private static KeyboardState keyState; private int vaoID; private int vboID; private int iboID; private Vector3[] vertices = { new Vector3(-0.5f, 0.5f, 0.0f), // V0 new Vector3(-0.5f, -0.5f, 0.0f), // V1 new Vector3(0.5f, -0.5f, 0.0f), // V2 new Vector3(0.5f, 0.5f, 0.0f) // V3 }; private Vector2[] texcoords = { new Vector2(0, 0), new Vector2(0, 1), new Vector2(1, 1), new Vector2(1, 0) }; private int[] indices = { 0, 1, 3, 3, 1, 2 }; private string vertsrc = @"#version 450 core in vec3 position; in vec2 textureCoords; out vec2 pass_textureCoords; void main(void) { gl_Position = vec4(position, 1.0); pass_textureCoords = textureCoords; }"; private string fragsrc = @"#version 450 core in vec2 pass_textureCoords; out vec4 out_color; uniform sampler2D textureSampler; void main(void) { out_color = texture(textureSampler, pass_textureCoords); }"; private int programID; private int vertexShaderID; private int fragmentShaderID; private int textureID; private Bitmap texsrc; public Game() : base(WIDTH, HEIGHT, GraphicsMode.Default, "Tutorial 05 - Texturing", GameWindowFlags.Default, DisplayDevice.Default, 4, 5, GraphicsContextFlags.Default) { } protected override void OnLoad(EventArgs e) { base.OnLoad(e); CursorVisible = true; GL.GenVertexArrays(1, out vaoID); GL.BindVertexArray(vaoID); GL.GenBuffers(1, out vboID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(vertices.Length * Vector3.SizeInBytes), vertices, BufferUsageHint.StaticDraw); GL.GenBuffers(1, out iboID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(indices.Length * sizeof(int)), indices, BufferUsageHint.StaticDraw); vertexShaderID = GL.CreateShader(ShaderType.VertexShader); GL.ShaderSource(vertexShaderID, vertsrc); GL.CompileShader(vertexShaderID); fragmentShaderID = GL.CreateShader(ShaderType.FragmentShader); GL.ShaderSource(fragmentShaderID, fragsrc); GL.CompileShader(fragmentShaderID); programID = GL.CreateProgram(); GL.AttachShader(programID, vertexShaderID); GL.AttachShader(programID, fragmentShaderID); GL.LinkProgram(programID); // Loading texture from embedded resource texsrc = new Bitmap(Assembly.GetEntryAssembly().GetManifestResourceStream("Tutorial_05.example.png")); textureID = GL.GenTexture(); GL.BindTexture(TextureTarget.Texture2D, textureID); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int)All.Linear); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int)All.Linear); GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba, texsrc.Width, texsrc.Height, 0, PixelFormat.Bgra, PixelType.UnsignedByte, IntPtr.Zero); System.Drawing.Imaging.BitmapData bitmap_data = texsrc.LockBits(new Rectangle(0, 0, texsrc.Width, texsrc.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, System.Drawing.Imaging.PixelFormat.Format32bppRgb); GL.TexSubImage2D(TextureTarget.Texture2D, 0, 0, 0, texsrc.Width, texsrc.Height, PixelFormat.Bgra, PixelType.UnsignedByte, bitmap_data.Scan0); texsrc.UnlockBits(bitmap_data); GL.Enable(EnableCap.Texture2D); GL.BufferData(BufferTarget.TextureBuffer, (IntPtr)(texcoords.Length * Vector2.SizeInBytes), texcoords, BufferUsageHint.StaticDraw); GL.BindAttribLocation(programID, 0, "position"); GL.BindAttribLocation(programID, 1, "textureCoords"); } protected override void OnResize(EventArgs e) { base.OnResize(e); GL.Viewport(0, 0, ClientRectangle.Width, ClientRectangle.Height); } protected override void OnUpdateFrame(FrameEventArgs e) { base.OnUpdateFrame(e); keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Key.Escape)) { Exit(); } } protected override void OnRenderFrame(FrameEventArgs e) { base.OnRenderFrame(e); // Prepare for background GL.Clear(ClearBufferMask.ColorBufferBit); GL.ClearColor(Color4.Red); // Draw traingles GL.EnableVertexAttribArray(0); GL.EnableVertexAttribArray(1); GL.BindVertexArray(vaoID); GL.UseProgram(programID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.VertexAttribPointer(0, 3, VertexAttribPointerType.Float, false, 0, IntPtr.Zero); GL.ActiveTexture(TextureUnit.Texture0); GL.BindTexture(TextureTarget.Texture3D, textureID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.DrawElements(BeginMode.Triangles, indices.Length, DrawElementsType.UnsignedInt, 0); GL.DisableVertexAttribArray(0); GL.DisableVertexAttribArray(1); SwapBuffers(); } protected override void OnClosed(EventArgs e) { base.OnClosed(e); GL.DeleteVertexArray(vaoID); GL.DeleteBuffer(vboID); } } } I can not remember where do I add GL.Uniform2();
    • By Jens Eckervogt
      Hello everyone
      For @80bserver8 nice job - I have found Google search. How did you port from Javascript WebGL to C# OpenTK.?
      I have been searched Google but it shows f***ing Unity 3D. I really want know how do I understand I want start with OpenTK But I want know where is porting of Javascript and C#?
       
      Thanks!
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL How fast is hardware-accelerated ray-tracing these days?

This topic is 784 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

What I mean by hardware-accelerated is using a GPGPU API such as OpenGL's compute shaders. Now, correct me if I'm wrong, but from what I've heard is that the only reason why rasterization is faster is due to hardware optimizations. So exactly how fast is ray-tracing on modern GPUs? Would making a game in it be viable? Or are we just not to that point yet?

Share this post


Link to post
Share on other sites
Advertisement

 

 

It's certainly possible, but whether it's the best choice entierly depends on your game. If you were making a game about refractions and caustics, that's something that's hard to do correctly with rasterization, so a ray-tracer might be more suitable. For typical games that just want good-enough graphics as fast as possible, rasterisation usually wins.

 

A hybrid system for using the appropriate technique where they perform best makes sense. But it does sound like a pain to implement.

 

 

 

You heard something that is wrong. For primary rays (rays coming directly out of the camera), they have high coherence and are perfectly suited to rasterisation. For most scenes, it's simply a more efficient algorithm. It's also well suited to hardware implementation, so combine the better algorithm with purpose-built hardware and it's the default choice (at least for primary rays).

 

Good to know.

Share this post


Link to post
Share on other sites

It's fast. But it's not fast enough to produce frame rates for real time. Take a look at Cycles in blender. It uses the GPU to do some rendering, but it takes a few seconds for it to actually finish computing.

Share this post


Link to post
Share on other sites

/me slow claps. I'll be a sonova biscuit eater. It still has that noise dithering effect though.

Edited by Tangletail

Share this post


Link to post
Share on other sites
I really would like to know how much GPUs they use for their Brigade videos.
Once tried a demo game on single gtx670 (that one looking a bit like Tomb Raider).
640 x 480, low frame rate, shadows yes but almost no radiosity.
It would have required more GPU power for more bounces and simply looked like low quality direct lighting.
I'd guess they use 4-8 GPUs.

In their new videos they have solved the noise problem, but i'm not sure about the issue of
temporal unstable overall brightness in scenes with mostly indirect lighting.

Share this post


Link to post
Share on other sites

V-Ray RT GPU is a good reference point, because those guys don't use any "hacks" or prebakes(by default), so it's basically a pure GPU raytracing.

Share this post


Link to post
Share on other sites

My understanding is that the ray tracing isn't really the hard part.  Its building the data structure that is the issue.  Whether you're using a BVH, oct-tree, binary tree, grid, or something else, the data structure is essential since it allows you to move your tracing time complexity from O(n) to O(log(n)).  So for large enough static scenes, ray tracing can actually beat out standard triangle rasterization.  The problem is building that data structure in real time.  Sure simple linear transformations within certain limitations can be handled relatively quickly, but vertex skinning, dynamic vertex displacement (like animated water), anything stretching/oozing, many particle effects, basically animation, is what really is the bottleneck at this point.

 

Really the problem should be re-stated, its not how fast GPUs can raytrace these days, its how fast can they build the raytracing data structure these days.

Share this post


Link to post
Share on other sites

My understanding is that the ray tracing isn't really the hard part. Its building the data structure that is the issue


While that's common opinion in graphics community, i disagree.
Say you have 10000 dynamic objects: Prebuild a tree per object, and at runtime build a tree from only 10000 nodes, that's <1 ms on GPU.

Research projects rebuild the entire tree every frame, thus they often show similar time for building and tracing.

The challenge is to parallelize tracing so each thread has similar amount of work, and wavefronts run also data coherent.
Animation has similar workload like in rasterization - you may need to refit bounding volumes in the tree, but that's always linear time.

I think raytracing will become primary solution for high frequency stuff like sharp reflections / shadows.
For low frequency stuff (radiosity, glossy reflections, soft shadows) i see much faster methods than path tracing.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement