• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By khawk
      LunarG has released new Vulkan SDKs for Windows, Linux, and macOS based on the 1.1.73 header. The new SDK includes:
      New extensions: VK_ANDROID_external_memory_android_hardware_buffer VK_EXT_descriptor_indexing VK_AMD_shader_core_properties VK_NV_shader_subgroup_partitioned Many bug fixes, increased validation coverage and accuracy improvements, and feature additions Developers can download the SDK from LunarXchange at https://vulkan.lunarg.com/sdk/home.

      View full story
    • By khawk
      LunarG has released new Vulkan SDKs for Windows, Linux, and macOS based on the 1.1.73 header. The new SDK includes:
      New extensions: VK_ANDROID_external_memory_android_hardware_buffer VK_EXT_descriptor_indexing VK_AMD_shader_core_properties VK_NV_shader_subgroup_partitioned Many bug fixes, increased validation coverage and accuracy improvements, and feature additions Developers can download the SDK from LunarXchange at https://vulkan.lunarg.com/sdk/home.
    • By mark_braga
      I have a pretty good experience with multi gpu programming in D3D12. Now looking at Vulkan, although there are a few similarities, I cannot wrap my head around a few things due to the extremely sparse documentation (typical Khronos...)
      In D3D12 -> You create a resource on GPU0 that is visible to GPU1 by setting the VisibleNodeMask to (00000011 where last two bits set means its visible to GPU0 and GPU1)
      In Vulkan - I can see there is the VkBindImageMemoryDeviceGroupInfoKHR struct which you add to the pNext chain of VkBindImageMemoryInfoKHR and then call vkBindImageMemory2KHR. You also set the device indices which I assume is the same as the VisibleNodeMask except instead of a mask it is an array of indices. Till now it's fine.
      Let's look at a typical SFR scenario:  Render left eye using GPU0 and right eye using GPU1
      You have two textures. pTextureLeft is exclusive to GPU0 and pTextureRight is created on GPU1 but is visible to GPU0 so it can be sampled from GPU0 when we want to draw it to the swapchain. This is in the D3D12 world. How do I map this in Vulkan? Do I just set the device indices for pTextureRight as { 0, 1 }
      Now comes the command buffer submission part that is even more confusing.
      There is the struct VkDeviceGroupCommandBufferBeginInfoKHR. It accepts a device mask which I understand is similar to creating a command list with a certain NodeMask in D3D12.
      So for GPU1 -> Since I am only rendering to the pTextureRight, I need to set the device mask as 2? (00000010)
      For GPU0 -> Since I only render to pTextureLeft and finally sample pTextureLeft and pTextureRight to render to the swap chain, I need to set the device mask as 1? (00000001)
      The same applies to VkDeviceGroupSubmitInfoKHR?
      Now the fun part is it does not work  . Both command buffers render to the textures correctly. I verified this by reading back the textures and storing as png. The left texture is sampled correctly in the final composite pass. But I get a black in the area where the right texture should appear. Is there something that I am missing in this? Here is a code snippet too
      void Init() { RenderTargetInfo info = {}; info.pDeviceIndices = { 0, 0 }; CreateRenderTarget(&info, &pTextureLeft); // Need to share this on both GPUs info.pDeviceIndices = { 0, 1 }; CreateRenderTarget(&info, &pTextureRight); } void DrawEye(CommandBuffer* pCmd, uint32_t eye) { // Do the draw // Begin with device mask depending on eye pCmd->Open((1 << eye)); // If eye is 0, we need to do some extra work to composite pTextureRight and pTextureLeft if (eye == 0) { DrawTexture(0, 0, width * 0.5, height, pTextureLeft); DrawTexture(width * 0.5, 0, width * 0.5, height, pTextureRight); } // Submit to the correct GPU pQueue->Submit(pCmd, (1 << eye)); } void Draw() { DrawEye(pRightCmd, 1); DrawEye(pLeftCmd, 0); }  
    • By turanszkij
      Hi,
      I finally managed to get the DX11 emulating Vulkan device working but everything is flipped vertically now because Vulkan has a different clipping space. What are the best practices out there to keep these implementation consistent? I tried using a vertically flipped viewport, and while it works on Nvidia 1050, the Vulkan debug layer is throwing error messages that this is not supported in the spec so it might not work on others. There is also the possibility to flip the clip scpace position Y coordinate before writing out with vertex shader, but that requires changing and recompiling every shader. I could also bake it into the camera projection matrices, though I want to avoid that because then I need to track down for the whole engine where I upload matrices... Any chance of an easy extension or something? If not, I will probably go with changing the vertex shaders.
    • By Alexa Savchenko
      I publishing for manufacturing our ray tracing engines and products on graphics API (C++, Vulkan API, GLSL460, SPIR-V): https://github.com/world8th/satellite-oem
      For end users I have no more products or test products. Also, have one simple gltf viewer example (only source code).
      In 2016 year had idea for replacement of screen space reflections, but in 2018 we resolved to finally re-profile project as "basis of render engine". In Q3 of 2017 year finally merged to Vulkan API. 
       
       
  • Advertisement
  • Advertisement
Sign in to follow this  

Vulkan Vulkan FBX runner with inputs

This topic is 715 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I have several FBX animation with ready clips.

I want to write an application with inputs, like games, directly going into runtime with debug.

where it'll animate based on my inputs. Maybe also camera movement with mouse.... and image processing like GUI made of pngs 

and flat texture with transparency channel. 

Where should i start learning?
I know Cpp and Csharp. 

But the new Vulkan is kinda, distracting. 
I'm also learning how to do GLSL via Nehe.

Share this post


Link to post
Share on other sites
Advertisement
First of all, decide what kind of display you'll want. How many meshes and what kinds of effects you want. If your main focus is just to display couple of raw meshes with simple shaders (ie your draw count will be low), you might not want to use vulkan, and just go for opengl.

The rest is straightforward for your platform of choice, get the fbx devkit, and display your data. Though the fbx api could be a mission. :) Depending on your target audience, you also might want to look into support animations from alembic. (that's more for the CG / VFX crowd though)

Share this post


Link to post
Share on other sites

I would always sugest C# for writing Tools as you dont need the power (and costs) of C++ for this. Framerates may also not be the problem in an animation tool. Also image/texture support is better using C# vs. C++ PNG libs.

 

You could use OpenTK for that, the OpenGL part should fit your needs where I agree to sirpalee for not using Vulkan at this topic, it is to heavy for that. You would work at least a couple of Weaks just for getting Vulkan environment 'as general' as you need it in your tool so switching to the lower learning curve of OpenGL would be the best choice here.

 

You simply should learn how to initialize Textures and create your Meshes via Framebuffer that should be enougth because OpenTK handles anything else from getting the Window ready to handling various kinds of Input and calculating the Math needed to upload anything to your shader.

 

Google for UI Tutorials, it isnt that heavy for simple ones or you create the GL context for a .Net panel and render in that and use Winforms for your UI. I made that a couple of times and it works very well because the Winform Controls can get a pointer to the handle that will be passed to context creation of GL create a render-ready context as well as using a window for that

Share this post


Link to post
Share on other sites

Thanks, i'll be going for GLSL then.
What are the libraries required for it then? UI, animation, texturing, effets, math...

i found glibmath and several others... but i can't find good one for physics.
 

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement