• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By khawk
      LunarG has released new Vulkan SDKs for Windows, Linux, and macOS based on the 1.1.73 header. The new SDK includes:
      New extensions: VK_ANDROID_external_memory_android_hardware_buffer VK_EXT_descriptor_indexing VK_AMD_shader_core_properties VK_NV_shader_subgroup_partitioned Many bug fixes, increased validation coverage and accuracy improvements, and feature additions Developers can download the SDK from LunarXchange at https://vulkan.lunarg.com/sdk/home.

      View full story
    • By khawk
      LunarG has released new Vulkan SDKs for Windows, Linux, and macOS based on the 1.1.73 header. The new SDK includes:
      New extensions: VK_ANDROID_external_memory_android_hardware_buffer VK_EXT_descriptor_indexing VK_AMD_shader_core_properties VK_NV_shader_subgroup_partitioned Many bug fixes, increased validation coverage and accuracy improvements, and feature additions Developers can download the SDK from LunarXchange at https://vulkan.lunarg.com/sdk/home.
    • By mark_braga
      I have a pretty good experience with multi gpu programming in D3D12. Now looking at Vulkan, although there are a few similarities, I cannot wrap my head around a few things due to the extremely sparse documentation (typical Khronos...)
      In D3D12 -> You create a resource on GPU0 that is visible to GPU1 by setting the VisibleNodeMask to (00000011 where last two bits set means its visible to GPU0 and GPU1)
      In Vulkan - I can see there is the VkBindImageMemoryDeviceGroupInfoKHR struct which you add to the pNext chain of VkBindImageMemoryInfoKHR and then call vkBindImageMemory2KHR. You also set the device indices which I assume is the same as the VisibleNodeMask except instead of a mask it is an array of indices. Till now it's fine.
      Let's look at a typical SFR scenario:  Render left eye using GPU0 and right eye using GPU1
      You have two textures. pTextureLeft is exclusive to GPU0 and pTextureRight is created on GPU1 but is visible to GPU0 so it can be sampled from GPU0 when we want to draw it to the swapchain. This is in the D3D12 world. How do I map this in Vulkan? Do I just set the device indices for pTextureRight as { 0, 1 }
      Now comes the command buffer submission part that is even more confusing.
      There is the struct VkDeviceGroupCommandBufferBeginInfoKHR. It accepts a device mask which I understand is similar to creating a command list with a certain NodeMask in D3D12.
      So for GPU1 -> Since I am only rendering to the pTextureRight, I need to set the device mask as 2? (00000010)
      For GPU0 -> Since I only render to pTextureLeft and finally sample pTextureLeft and pTextureRight to render to the swap chain, I need to set the device mask as 1? (00000001)
      The same applies to VkDeviceGroupSubmitInfoKHR?
      Now the fun part is it does not work  . Both command buffers render to the textures correctly. I verified this by reading back the textures and storing as png. The left texture is sampled correctly in the final composite pass. But I get a black in the area where the right texture should appear. Is there something that I am missing in this? Here is a code snippet too
      void Init() { RenderTargetInfo info = {}; info.pDeviceIndices = { 0, 0 }; CreateRenderTarget(&info, &pTextureLeft); // Need to share this on both GPUs info.pDeviceIndices = { 0, 1 }; CreateRenderTarget(&info, &pTextureRight); } void DrawEye(CommandBuffer* pCmd, uint32_t eye) { // Do the draw // Begin with device mask depending on eye pCmd->Open((1 << eye)); // If eye is 0, we need to do some extra work to composite pTextureRight and pTextureLeft if (eye == 0) { DrawTexture(0, 0, width * 0.5, height, pTextureLeft); DrawTexture(width * 0.5, 0, width * 0.5, height, pTextureRight); } // Submit to the correct GPU pQueue->Submit(pCmd, (1 << eye)); } void Draw() { DrawEye(pRightCmd, 1); DrawEye(pLeftCmd, 0); }  
    • By turanszkij
      Hi,
      I finally managed to get the DX11 emulating Vulkan device working but everything is flipped vertically now because Vulkan has a different clipping space. What are the best practices out there to keep these implementation consistent? I tried using a vertically flipped viewport, and while it works on Nvidia 1050, the Vulkan debug layer is throwing error messages that this is not supported in the spec so it might not work on others. There is also the possibility to flip the clip scpace position Y coordinate before writing out with vertex shader, but that requires changing and recompiling every shader. I could also bake it into the camera projection matrices, though I want to avoid that because then I need to track down for the whole engine where I upload matrices... Any chance of an easy extension or something? If not, I will probably go with changing the vertex shaders.
    • By Alexa Savchenko
      I publishing for manufacturing our ray tracing engines and products on graphics API (C++, Vulkan API, GLSL460, SPIR-V): https://github.com/world8th/satellite-oem
      For end users I have no more products or test products. Also, have one simple gltf viewer example (only source code).
      In 2016 year had idea for replacement of screen space reflections, but in 2018 we resolved to finally re-profile project as "basis of render engine". In Q3 of 2017 year finally merged to Vulkan API. 
       
       
  • Advertisement
  • Advertisement
Sign in to follow this  

Vulkan How to copy Swap chain Image to VkBuffer in case of multiple subpasses in Vulkan?

This topic is 422 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I am looking in this demo for rendering a scene in vulkan using depth peeling Order Independent Transparency

Blog: https://matthewwellings.com/blog/depth-peeling-order-independent-transparency-in-vulkan/ Code: https://github.com/openforeveryone/VulkanDepthPeel

I have modified the code so that I am able to save the final render in an output image(png) before presenting for rendering to the surface.

Once the primary command buffer consisting secondary command buffers responsible for drawing operations is submitted to queue for execution & rendering is finished, I am using vkCmdCopyImageToBuffer for copying the data from the current swap chain image(The copy operation is done after introducing the image barrier to make sure rendering is completed first) to a VkBuffer & then mapping the buffer memory to an unsigned char pointer & writing this information to the PNG file. But the output which I see in the PNG is different from the one rendered on window as the boxes are almost entirely transparent with some RGB information as you can see in the image below.

My guess is this might be the case due to this particular demo involving multiple subpasses & I am not copying the data properly but only thing bothering me is that since I am directly copying from swapchain image just before finally presenting to the surface, I should be having the final color data in the image & hence PNG & render should match.

Rendered Frame:

Q2L6q.png

Saved Frame:

gJNZR.png

Let me know if I have missed explaining any details, any help is appreciated. Thanks!

Share this post


Link to post
Share on other sites
Advertisement

Found the solution. The image was being saved correctly, its just that compositing was done differently on the rendered surface & while saving the png. I am using VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR in my swapchain. So Vulkan will not do any pre or post multiplication while compositing the image but that task is left to native window platform surface which calculates the final composited image & hence the rendered image was different than the saved png, setting the alpha value to 255 while saving the png does solve this problem.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement