Sign in to follow this  
KarimIO

OpenGL 0.5s lag after binding texture on Nvidia

Recommended Posts

Hey guys. I'm trying to get my application to work on my Nvidia GTX 970 desktop. It currently works on my Intel HD 3000 laptop, but on the desktop, every bind textures specifically from framebuffers, I get half a second of lag. This is done 4 times as I have three RGBA textures and one depth 32F buffer. I tried to use debugging software for the first time - RenderDoc only shows SwapBuffers() and no OGL calls, while Nvidia Nsight crashes upon execution, so neither are helpful. Without binding it runs regularly. This does not happen with non-framebuffer binds.

GLFramebuffer::GLFramebuffer(FramebufferCreateInfo createInfo) {
  glGenFramebuffers(1, &fbo);
	glBindFramebuffer(GL_FRAMEBUFFER, fbo);

	textures = new GLuint[createInfo.numColorTargets];
	glGenTextures(createInfo.numColorTargets, textures);
	GLenum *DrawBuffers = new GLenum[createInfo.numColorTargets];
	for (uint32_t i = 0; i < createInfo.numColorTargets; i++) {
		glBindTexture(GL_TEXTURE_2D, textures[i]);

		GLint internalFormat;
		GLenum format;
		TranslateFormats(createInfo.colorFormats[i], format, internalFormat); // returns GL_RGBA and GL_RGBA

		glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, createInfo.width, createInfo.height, 0, format, GL_FLOAT, 0);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

		DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i;
		glBindTexture(GL_TEXTURE_2D, 0);
		glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
	}

	if (createInfo.depthFormat != FORMAT_DEPTH_NONE) {
		GLenum depthFormat;
		switch (createInfo.depthFormat) {
		case FORMAT_DEPTH_16:
			depthFormat = GL_DEPTH_COMPONENT16;
			break;
		case FORMAT_DEPTH_24:
			depthFormat = GL_DEPTH_COMPONENT24;
			break;
		case FORMAT_DEPTH_32:
			depthFormat = GL_DEPTH_COMPONENT32;
			break;
		case FORMAT_DEPTH_24_STENCIL_8:
			depthFormat = GL_DEPTH24_STENCIL8;
			break;
		case FORMAT_DEPTH_32_STENCIL_8:
			depthFormat = GL_DEPTH32F_STENCIL8;
			break;
		}

		glGenTextures(1, &depthrenderbuffer);
		glBindTexture(GL_TEXTURE_2D, depthrenderbuffer);
		glTexImage2D(GL_TEXTURE_2D, 0, depthFormat, createInfo.width, createInfo.height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
		glBindTexture(GL_TEXTURE_2D, 0);

		glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthrenderbuffer, 0);
	}

	if (createInfo.numColorTargets > 0)
		glDrawBuffers(createInfo.numColorTargets, DrawBuffers);
	else
		glDrawBuffer(GL_NONE);

	if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
		std::cout << "Framebuffer Incomplete\n";

	glBindFramebuffer(GL_FRAMEBUFFER, 0);

	width = createInfo.width;
	height = createInfo.height;
}
	// ...
	// FBO Creation
	FramebufferCreateInfo gbufferCI;
	gbufferCI.colorFormats = gbufferCFs.data();
	gbufferCI.depthFormat = FORMAT_DEPTH_32;
	gbufferCI.numColorTargets = gbufferCFs.size();
	gbufferCI.width = engine.settings.resolutionX;
	gbufferCI.height = engine.settings.resolutionY;
	gbufferCI.renderPass = nullptr;
	gbuffer = graphicsWrapper->CreateFramebuffer(gbufferCI);
    
    // Bind
	glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
	// Draw here...


	// Bind to textures
	glActiveTexture(GL_TEXTURE0);
	glBindTexture(GL_TEXTURE_2D, textures[0]);
	glActiveTexture(GL_TEXTURE1);
	glBindTexture(GL_TEXTURE_2D, textures[1]);
	glActiveTexture(GL_TEXTURE2);
	glBindTexture(GL_TEXTURE_2D, textures[2]);
	glActiveTexture(GL_TEXTURE3);
	glBindTexture(GL_TEXTURE_2D, depthrenderbuffer);

Here is an extract of my code. I can't think of anything else to include. I've really been butting my head into a wall trying to think of a reason but I can think of none and all my research yields nothing. Thanks in advance!

Share this post


Link to post
Share on other sites

I'm pretty new to GPU View too, so I'm not really sure what to look for :D:| 

I looked through the capture that you PM'ed me, hoping to maybe find that some NVidia thread was busy while your game was stalled, or the GPU was busy with some kind of DMA command or something... but all I can understand from this is that the GPU is idling a lot, and your game's main thread is extremely busy :( 
Son5om2.png

This is what a well-performing capture should look like though -- notice the HW queue and the game's device context are constantly full of queued up work.
XF8d4Vl.png

 

Have you tried adding manual timing code to your game, to try and locate exactly which functions are blocking the CPU? You say that if you disable some code, the performance issue is gone... but try timing different bits of code to see if you can find where the time is going.

Share this post


Link to post
Share on other sites

Like I said the only issue comes from glbindtexture of a framebuffer texture. Regular textures work fine. Bitting works fine so I know it's not an issue of populating the framebuffer asynchronously. I used breakpoints to figure out the timing and what causes the issue.  Keep in mind vsync is on so that'd why there's not much work to be done. The scene is a simple crytek sponza with no lighting yet (it's enabled on my Intel but I disabled it for now) so there's not many commands.  I haven't multithreaded anything yet so it shouldn't matter if it's idle. This happens no matter how many times I restart so not an issue of Nvidia working on something else. The rest of the frame takes 12ms due to vsync. Also I had all this and so much more running before I improved the rendering architecture (I wrote my own parser and exporter for faster loading, redesigned the rendering wrappers to make vulkan work better, and I made everything draw based on shader and material first rather than object) 

 

Edit: Oh and thank you so much for helping me so far! 

Edited by KarimIO
Gratitude

Share this post


Link to post
Share on other sites
9 hours ago, TheChubu said:

Are you checking for glErrors? Or better, using arb_debug_output or khr_debug_output?

Yeah, the debug output. I only get info and one low warning which is just giving me buffer sizes I think. The latter shows up every frame. 

8 hours ago, Hodgman said:

Which GL function calls contain these massive stalls?

Like I said, glbindtexture but only when used with a framebuffer texture. I've checked the creation of it a hundred times over and don't think there's any problems. 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
      628306
    • Total Posts
      2981940
  • Similar Content

    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
    • By Abecederia
      So I've recently started learning some GLSL and now I'm toying with a POM shader. I'm trying to optimize it and notice that it starts having issues at high texture sizes, especially with self-shadowing.
      Now I know POM is expensive either way, but would pulling the heightmap out of the normalmap alpha channel and in it's own 8bit texture make doing all those dozens of texture fetches more cheap? Or is everything in the cache aligned to 32bit anyway? I haven't implemented texture compression yet, I think that would help? But regardless, should there be a performance boost from decoupling the heightmap? I could also keep it in a lower resolution than the normalmap if that would improve performance.
      Any help is much appreciated, please keep in mind I'm somewhat of a newbie. Thanks!
    • By test opty
      Hi,
      I'm trying to learn OpenGL through a website and have proceeded until this page of it. The output is a simple triangle. The problem is the complexity.
      I have read that page several times and tried to analyse the code but I haven't understood the code properly and completely yet. This is the code:
       
      #include <glad/glad.h> #include <GLFW/glfw3.h> #include <C:\Users\Abbasi\Desktop\std_lib_facilities_4.h> using namespace std; //****************************************************************************** void framebuffer_size_callback(GLFWwindow* window, int width, int height); void processInput(GLFWwindow *window); // settings const unsigned int SCR_WIDTH = 800; const unsigned int SCR_HEIGHT = 600; const char *vertexShaderSource = "#version 330 core\n" "layout (location = 0) in vec3 aPos;\n" "void main()\n" "{\n" " gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" "}\0"; const char *fragmentShaderSource = "#version 330 core\n" "out vec4 FragColor;\n" "void main()\n" "{\n" " FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" "}\n\0"; //******************************* int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "My First Triangle", nullptr, nullptr); if (window == nullptr) { cout << "Failed to create GLFW window" << endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // glad: load all OpenGL function pointers if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { cout << "Failed to initialize GLAD" << endl; return -1; } // build and compile our shader program // vertex shader int vertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); glCompileShader(vertexShader); // check for shader compile errors int success; char infoLog[512]; glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(vertexShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << endl; } // fragment shader int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); glCompileShader(fragmentShader); // check for shader compile errors glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(fragmentShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << endl; } // link shaders int shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vertexShader); glAttachShader(shaderProgram, fragmentShader); glLinkProgram(shaderProgram); // check for linking errors glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(shaderProgram, 512, nullptr, infoLog); cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << endl; } glDeleteShader(vertexShader); glDeleteShader(fragmentShader); // set up vertex data (and buffer(s)) and configure vertex attributes float vertices[] = { -0.5f, -0.5f, 0.0f, // left 0.5f, -0.5f, 0.0f, // right 0.0f, 0.5f, 0.0f // top }; unsigned int VBO, VAO; glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); // bind the Vertex Array Object first, then bind and set vertex buffer(s), //and then configure vertex attributes(s). glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); // note that this is allowed, the call to glVertexAttribPointer registered VBO // as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind glBindBuffer(GL_ARRAY_BUFFER, 0); // You can unbind the VAO afterwards so other VAO calls won't accidentally // modify this VAO, but this rarely happens. Modifying other // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind // VAOs (nor VBOs) when it's not directly necessary. glBindVertexArray(0); // uncomment this call to draw in wireframe polygons. //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // render loop while (!glfwWindowShouldClose(window)) { // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // draw our first triangle glUseProgram(shaderProgram); glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to // bind it every time, but we'll do so to keep things a bit more organized glDrawArrays(GL_TRIANGLES, 0, 3); // glBindVertexArray(0); // no need to unbind it every time // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) glfwSwapBuffers(window); glfwPollEvents(); } // optional: de-allocate all resources once they've outlived their purpose: glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); // glfw: terminate, clearing all previously allocated GLFW resources. glfwTerminate(); return 0; } //************************************************** // process all input: query GLFW whether relevant keys are pressed/released // this frame and react accordingly void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); } //******************************************************************** // glfw: whenever the window size changed (by OS or user resize) this callback function executes void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); } As you see, about 200 lines of complicated code only for a simple triangle. 
      I don't know what parts are necessary for that output. And also, what the correct order of instructions for such an output or programs is, generally. That start point is too complex for a beginner of OpenGL like me and I don't know how to make the issue solved. What are your ideas please? What is the way to figure both the code and the whole program out correctly please?
      I wish I'd read a reference that would teach me OpenGL through a step-by-step method. 
  • Popular Now