Jump to content
  • Advertisement
Sign in to follow this  
Mercesa

DX11 Need to sample small res int2 texture for full screen pass

Recommended Posts

I am currently trying working on implementing a paper which requires me to use a downsampled texture of type int2 of resolution  (width/k, height/k). Where K is an unsigned integer k = (1, infinity)

I need to sample this smaller int2 texture in my full screen pass and effectively sample it per window pixel, but I can not use texture.Sample as it is an int2 type AND because it is smaller than the screen size I have read I am not able to use texture.Load either. 

So in short: Need to use downsampled int2 texture in fullscreen rendering pass but I don't know how to sample this texture properly.

 

Edited by Mercesa

Share this post


Link to post
Share on other sites
Advertisement

Hi, why you can't use texture.Sample() ? I think you should be able to create a  DXGI_FORMAT_R32G32_SINT and sample it :D

Share this post


Link to post
Share on other sites
7 hours ago, piluve said:

Hi, why you can't use texture.Sample() ? I think you should be able to create a  DXGI_FORMAT_R32G32_SINT and sample it

No, INT textures are not filterable. Can't you juss do a myTex[ uint(svPosition) % textureSize ] ? If you need filtering, use a FLOAT format, or Gather and apply bilinear filtering yourself

Edited by galop1n

Share this post


Link to post
Share on other sites

I wasn't aware you could access textures like that in a pixel shader, but it makes sense since it's possible in a compute shader. I'll try it out tomorrow and will make another post :) thanks 

Share this post


Link to post
Share on other sites
21 hours ago, Mercesa said:

AND because it is smaller than the screen size I have read I am not able to use texture.Load either.

Can you explain why you cannot use Load, which would seem like the way to go ...?

Share this post


Link to post
Share on other sites

I've read somewhere load only works if you have exactly matching coordinates which match the screen 1:1, not if you have a texture of 1/2 or 1/4th size of screen. I have attempted to use Load but I am not sure how to calculate the correct screen coordinates.

Since if I do position/ float2(screenWidth, screenHeight)  * (textureSizeX, textureSizeY) and use that as coordinates for load. It does not work. The link below stated this, though there was no reasoning stated for this, and after experimenting myself I also could not figure out how to use Load properly with a smaller texture.

https://gamedev.stackexchange.com/questions/65845/difference-between-texture-load-and-texture-sample-methods-in-directx

Edited by Mercesa

Share this post


Link to post
Share on other sites
16 hours ago, galop1n said:

No, INT textures are not filterable. Can't you juss do a myTex[ uint(svPosition) % textureSize ] ? If you need filtering, use a FLOAT format, or Gather and apply bilinear filtering yourself

I have tried myTex[uint(svPosition) % textureSize] and I still end up with a black texture :( I am 100% sure the texture is bound to the pipeline since it shows up in my graphics debugging.

Share this post


Link to post
Share on other sites

Wow ok, I think I figured it out, debug mode yesterday gave me no errors and it suddenly says this.

PSSetShaderResources: Resource being set to PS shader resource slot 6 is still bound on output! Forcing to NULL. 

Sometimes restarting visual studio performs miracles.. (also this is infuriating because why the hell would graphics debugging even show the texture being bound if this error was the case?

 

The only problem now it keeps giving me this error even though I am explicitly setting the resource to 0 before using it. 

 

edit: fixed my problem by using the last post of this thread

 

Edited by Mercesa

Share this post


Link to post
Share on other sites

To be clear, Texture2D::Load is functionally equivalent to using the [] operator. They're just different HLSL syntax that compiles to the same exact bytecode. 

The way that they both work is that they use unnormalized coordinates to access the texture data. So for a 2D texture you'll typically pass a pair of integers where the X component is of the range [0, width - 1] and the Y component is of the range [0, height - 1] (values outside of that range will always return 0). This is different from the normalized UV coordinates that are used for Texture2D::Sample, where you pass [0.0, 1.0] floats that are mapped to the minimum and maximum extents of the texture. To convert from normalized to unnormalized coordinates you can use some simple math:

int2 unNormalized = int2(uv * float2(textureWidth, textureHeight));

Hopefully this makes it clear that you can pass arbitrary coordinates to Load or operator[], and so there's no requirement that the texture you're sampling has dimensions that exactly match the dimensions of your render target. However you may have to do a bit of math to compute the coordinates that you pass.

So what Mercasa suggested was using "myTex[uint(svPosition) % textureSize]", which is one way of mapping your texture to your pixel shader positions. What this will do here is essentially "tile" the low-resolution texture across your larger-resolution render target.  So for instance if the low-resolution texture is 1/4 the width and height of your render target, the low-resolution render target will repeat 4 times in the X direction and 4 times in the Y direction, effectively "repeating' it 16 times total. I suspect what you want is to instead load your texture such that the low-resolution texture still "covers" the same amount of screen space as the source texture and effectively covers the entire output render target. So if it was 1/4 the width and height, each texel of the low-res texture would cover a 4x4 block of pixels being shaded by your pixel shader. To do this, you'll want to divide the pixel coordinate by your "k" factor, where rtSize / textureSize == k:

myTex[uint2(svPosition / k)]

Doing this will be roughly equivalent to using Sample with normal screen-mapped UV coordinates, with point filtering applied.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By chiffre
      Introduction:
      In general my questions pertain to the differences between floating- and fixed-point data. Additionally I would like to understand when it can be advantageous to prefer fixed-point representation over floating-point representation in the context of vertex data and how the hardware deals with the different data-types. I believe I should be able to reduce the amount of data (bytes) necessary per vertex by choosing the most opportune representations for my vertex attributes. Thanks ahead of time if you, the reader, are considering the effort of reading this and helping me.
      I found an old topic that shows this is possible in principal, but I am not sure I understand what the pitfalls are when using fixed-point representation and whether there are any hardware-based performance advantages/disadvantages.
      (TLDR at bottom)
      The Actual Post:
      To my understanding HLSL/D3D11 offers not just the traditional floating point model in half-,single-, and double-precision, but also the fixed-point model in form of signed/unsigned normalized integers in 8-,10-,16-,24-, and 32-bit variants. Both models offer a finite sequence of "grid-points". The obvious difference between the two models is that the fixed-point model offers a constant spacing between values in the normalized range of [0,1] or [-1,1], while the floating point model allows for smaller "deltas" as you get closer to 0, and larger "deltas" the further you are away from 0.
      To add some context, let me define a struct as an example:
      struct VertexData { float[3] position; //3x32-bits float[2] texCoord; //2x32-bits float[3] normals; //3x32-bits } //Total of 32 bytes Every vertex gets a position, a coordinate on my texture, and a normal to do some light calculations. In this case we have 8x32=256bits per vertex. Since the texture coordinates lie in the interval [0,1] and the normal vector components are in the interval [-1,1] it would seem useful to use normalized representation as suggested in the topic linked at the top of the post. The texture coordinates might as well be represented in a fixed-point model, because it seems most useful to be able to sample the texture in a uniform manner, as the pixels don't get any "denser" as we get closer to 0. In other words the "delta" does not need to become any smaller as the texture coordinates approach (0,0). A similar argument can be made for the normal-vector, as a normal vector should be normalized anyway, and we want as many points as possible on the sphere around (0,0,0) with a radius of 1, and we don't care about precision around the origin. Even if we have large textures such as 4k by 4k (or the maximum allowed by D3D11, 16k by 16k) we only need as many grid-points on one axis, as there are pixels on one axis. An unsigned normalized 14 bit integer would be ideal, but because it is both unsupported and impractical, we will stick to an unsigned normalized 16 bit integer. The same type should take care of the normal vector coordinates, and might even be a bit overkill.
      struct VertexData { float[3] position; //3x32-bits uint16_t[2] texCoord; //2x16bits uint16_t[3] normals; //3x16bits } //Total of 22 bytes Seems like a good start, and we might even be able to take it further, but before we pursue that path, here is my first question: can the GPU even work with the data in this format, or is all I have accomplished minimizing CPU-side RAM usage? Does the GPU have to convert the texture coordinates back to a floating-point model when I hand them over to the sampler in my pixel shader? I have looked up the data types for HLSL and I am not sure I even comprehend how to declare the vertex input type in HLSL. Would the following work?
      struct VertexInputType { float3 pos; //this one is obvious unorm half2 tex; //half corresponds to a 16-bit float, so I assume this is wrong, but this the only 16-bit type I found on the linked MSDN site snorm half3 normal; //same as above } I assume this is possible somehow, as I have found input element formats such as: DXGI_FORMAT_R16G16B16A16_SNORM and DXGI_FORMAT_R16G16B16A16_UNORM (also available with a different number of components, as well as different component lengths). I might have to avoid 3-component vectors because there is no 3-component 16-bit input element format, but that is the least of my worries. The next question would be: what happens with my normals if I try to do lighting calculations with them in such a normalized-fixed-point format? Is there no issue as long as I take care not to mix floating- and fixed-point data? Or would that work as well? In general this gives rise to the question: how does the GPU handle fixed-point arithmetic? Is it the same as integer-arithmetic, and/or is it faster/slower than floating-point arithmetic?
      Assuming that we still have a valid and useful VertexData format, how far could I take this while remaining on the sensible side of what could be called optimization? Theoretically I could use the an input element format such as DXGI_FORMAT_R10G10B10A2_UNORM to pack my normal coordinates into a 10-bit fixed-point format, and my verticies (in object space) might even be representable in a 16-bit unsigned normalized fixed-point format. That way I could end up with something like the following struct:
      struct VertexData { uint16_t[3] pos; //3x16bits uint16_t[2] texCoord; //2x16bits uint32_t packedNormals; //10+10+10+2bits } //Total of 14 bytes Could I use a vertex structure like this without too much performance-loss on the GPU-side? If the GPU has to execute some sort of unpacking algorithm in the background I might as well let it be. In the end I have a functioning deferred renderer, but I would like to reduce the memory footprint of the huge amount of vertecies involved in rendering my landscape. 
      TLDR: I have a lot of vertices that I need to render and I want to reduce the RAM-usage without introducing crazy compression/decompression algorithms to the CPU or GPU. I am hoping to find a solution by involving fixed-point data-types, but I am not exactly sure how how that would work.
    • By cozzie
      Hi all,
      I was wondering it it matters in which order you draw 2D and 3D items, looking at the BeginDraw/EndDraw calls on a D2D rendertarget.
      The order in which you do the actual draw calls is clear, 3D first then 2D, means the 2D (DrawText in this case) is in front of the 3D scene.
      The question is mainly about when to call the BeginDraw and EndDraw.
      Note that I'm drawing D2D stuff through a DXGI surface linked to the 3D RT.
      Option 1:
      A - Begin frame, clear D3D RT
      B - Draw 3D
      C - BeginDraw D2D RT
      D - Draw 2D
      E - EndDraw D2D RT
      F - Present
      Option 2:
      A - Begin frame, clear D3D RT + BeginDraw D2D RT
      B - Draw 3D
      C - Draw 2D
      D - EndDraw D2D RT
      E- Present
      Would there be a difference (performance/issue?) in using option 2? (versus 1)
      Any input is appreciated.
    • By Sebastian Werema
      Do you know any papers that cover custom data structures like lists or binary trees implemented in hlsl without CUDA that work perfectly fine no matter how many threads try to use them at any given time?
    • By cozzie
      Hi all,
      Last week I noticed that when I run my test application(s) in Renderdoc, it crashes when it enable my code that uses D2D/DirectWrite. In Visual Studio no issues occur (debug or release), but when I run the same executable in Renderdoc, it crashes somehow (assert of D2D rendertarget or without any information). Before I spend hours on debugging/ figuring it out, does someone have experience with this symptom and/or know if Renderdoc has known issues with D2D? (if so, that would be bad news for debugging my application in the future );
      I can also post some more information on what happens, code and which code commented out, eliminates the problems (when running in RenderDoc).
      Any input is appreciated.
    • By lonewolff
      Hi Guys,
      I understand how to create input layouts etc... But I am wondering is it at all possible to derive an input layout from a shader and create the input layout directly from this? (Rather than manually specifying the input layout format?)
      Thanks in advance :)
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!