• Advertisement
Sign in to follow this  

DX11 Dynamic ibl

Recommended Posts

Hi guys,

i implemented ibl in my engine. Currently i precompute cubemaps offline and use them in game. This works good, but its only static. I would like to implement dynamic cubemap creation and convolution. I more or less know how to do it. But : My current workflow is : Render hdr cubemap in 3dsmax with mental ray (white material for everything). Convolute with ibl baker. Use it in game. Capture probe ingame (only once). Convolute with ibl baker and use it without changing. This is used for every "ambient" light in game. On top of that I'm rendering "normal" light (with ambient and specular).

I would like to capture and convolute cubemaps dynamically in game. So capture cubemap in 3ds max once. Use It in game and generate cube maps there at some time. This sounds easy. But as I said I first render ambient lights and on top of that normal lights. Then I create cubemap from that and use it in next frame for ambient light and add normal lights... Creating infinite feedback. Is there any way around it ? I believe games are using reatime generated ibl cubemaps. Or it's done completely differently ?

Share this post

Link to post
Share on other sites
3 hours ago, joeblack said:

Creating infinite feedback.

The feedback loop is actually just "bounce lighting". As long as your materials obey the physical rule of conservation of energy, it will be ok. Every time through the loop, most of the energy gets lost, and exponentially more and more gets lost every iteration. 

Share this post

Link to post
Share on other sites
6 hours ago, Hodgman said:

The feedback loop is actually just "bounce lighting". As long as your materials obey the physical rule of conservation of energy, it will be ok. Every time through the loop, most of the energy gets lost, and exponentially more and more gets lost every iteration. 

Not really, this leads into the "local lighting" infinite bounce trap. Light won't "travel" throughout the level correctly unless you iterate over every single cubemap therein, which you don't really want to do. So you end up with pockets of extreme brightness where the light bounces around next to ones of extreme darkness. You also have iteration time lag, so when you start it's very dark and the longer you hang around the brighter (though less exponentially) it gets as each iteration bounces more light. Still, it can be very annoying looking, as there's a literal "lag" to light and it's travelling very slowly somehow.

The general idea is doable however! The only full shipped version I'm aware of is Call of Duty Infinite Warfare with their Fast filtering of reflection probes and the Rendering part. There's several strategies you could choose from, but all of them ditch the idea of taking the previous cubemap lighting results and re-applying them infinitely and recursively.

One is only using local and sun light for lighting each probe at runtime. You'd only get one "bounce" but you could render and ambient light as well. Another is rendering the ambient term into the reflection probes, then just using the reflection probes for the final pass and no ambient there. But this can lead to odd colorbleeding results that don't look good.

A hack could be as so: Light your cubemap with an ambient term, take the resulting hdr cubemap and re-light the original, unlit cubemap with it once. This should provide an approximation of multiple light bounces and smooth out any weird color/lightbleeding artifacts that come from doing only one "ambient" bounce. As long as you smoothly blend between cubemaps for both spec/diffuse I'd suspect there wouldn't be much "boundary" artefacts where inappropriate dramatic lighting changes happen.

That being said check out the rendering parts separate spherical harmonic ambient occlusion like term. The idea is to take a higher resolution, precomputed sample of global illumination results. And then where that differs from the sparser cubemap information bake the difference into a greyscale spherical harmonic, so naturally dark areas don't get lit up inappropriately because the cubemap isn't correct, and vice versa. It's a hack, but an effective one.

Edit  - The Witcher 3 also does some sort of dynamic cubemap thing. But I'm not entirely sure how it works and I don't think they ever said.

Edited by FreneticPonE

Share this post

Link to post
Share on other sites

Hi Hodgman ,

after I implemented it, it looks quite good actually, you were right. Im using NdL/PI for diffuse and GGX from internet for specular. For 128 samples its also quite fast. I needed to rewrite my camera culling code a bit to make it usable.


Thanks again.

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Advertisement
  • Popular Now

  • Similar Content

    • By isu diss
      I'm trying to duplicate vertices using std::map to be used in a vertex buffer. I don't get the correct index buffer(myInds) or vertex buffer(myVerts). I can get the index array from FBX but it differs from what I get in the following std::map code. Any help is much appreciated.
      struct FBXVTX { XMFLOAT3 Position; XMFLOAT2 TextureCoord; XMFLOAT3 Normal; }; std::map< FBXVTX, int > myVertsMap; std::vector<FBXVTX> myVerts; std::vector<int> myInds; HRESULT FBXLoader::Open(HWND hWnd, char* Filename, bool UsePositionOnly) { HRESULT hr = S_OK; if (FBXM) { FBXIOS = FbxIOSettings::Create(FBXM, IOSROOT); FBXM->SetIOSettings(FBXIOS); FBXI = FbxImporter::Create(FBXM, ""); if (!(FBXI->Initialize(Filename, -1, FBXIOS))) { hr = E_FAIL; MessageBox(hWnd, (wchar_t*)FBXI->GetStatus().GetErrorString(), TEXT("ALM"), MB_OK); } FBXS = FbxScene::Create(FBXM, "REALMS"); if (!FBXS) { hr = E_FAIL; MessageBox(hWnd, TEXT("Failed to create the scene"), TEXT("ALM"), MB_OK); } if (!(FBXI->Import(FBXS))) { hr = E_FAIL; MessageBox(hWnd, TEXT("Failed to import fbx file content into the scene"), TEXT("ALM"), MB_OK); } FbxAxisSystem OurAxisSystem = FbxAxisSystem::DirectX; FbxAxisSystem SceneAxisSystem = FBXS->GetGlobalSettings().GetAxisSystem(); if(SceneAxisSystem != OurAxisSystem) { FbxAxisSystem::DirectX.ConvertScene(FBXS); } FbxSystemUnit SceneSystemUnit = FBXS->GetGlobalSettings().GetSystemUnit(); if( SceneSystemUnit.GetScaleFactor() != 1.0 ) { FbxSystemUnit::cm.ConvertScene( FBXS ); } if (FBXI) FBXI->Destroy(); FbxNode* MainNode = FBXS->GetRootNode(); int NumKids = MainNode->GetChildCount(); FbxNode* ChildNode = NULL; for (int i=0; i<NumKids; i++) { ChildNode = MainNode->GetChild(i); FbxNodeAttribute* NodeAttribute = ChildNode->GetNodeAttribute(); if (NodeAttribute->GetAttributeType() == FbxNodeAttribute::eMesh) { FbxMesh* Mesh = ChildNode->GetMesh(); if (UsePositionOnly) { NumVertices = Mesh->GetControlPointsCount();//number of vertices MyV = new XMFLOAT3[NumVertices]; for (DWORD j = 0; j < NumVertices; j++) { FbxVector4 Vertex = Mesh->GetControlPointAt(j);//Gets the control point at the specified index. MyV[j] = XMFLOAT3((float)Vertex.mData[0], (float)Vertex.mData[1], (float)Vertex.mData[2]); } NumIndices = Mesh->GetPolygonVertexCount();//number of indices MyI = (DWORD*)Mesh->GetPolygonVertices();//index array } else { FbxLayerElementArrayTemplate<FbxVector2>* uvVertices = NULL; Mesh->GetTextureUV(&uvVertices); int idx = 0; for (int i = 0; i < Mesh->GetPolygonCount(); i++)//polygon(=mostly triangle) count { for (int j = 0; j < Mesh->GetPolygonSize(i); j++)//retrieves number of vertices in a polygon { FBXVTX myVert; int p_index = 3*i+j; int t_index = Mesh->GetTextureUVIndex(i, j); FbxVector4 Vertex = Mesh->GetControlPointAt(p_index);//Gets the control point at the specified index. myVert.Position = XMFLOAT3((float)Vertex.mData[0], (float)Vertex.mData[1], (float)Vertex.mData[2]); FbxVector4 Normal; Mesh->GetPolygonVertexNormal(i, j, Normal); myVert.Normal = XMFLOAT3((float)Normal.mData[0], (float)Normal.mData[1], (float)Normal.mData[2]); FbxVector2 uv = uvVertices->GetAt(t_index); myVert.TextureCoord = XMFLOAT2((float)uv.mData[0], (float)uv.mData[1]); if ( myVertsMap.find( myVert ) != myVertsMap.end() ) myInds.push_back( myVertsMap[ myVert ]); else { myVertsMap.insert( std::pair<FBXVTX, int> (myVert, idx ) ); myVerts.push_back(myVert); myInds.push_back(idx); idx++; } } } } } } } else { hr = E_FAIL; MessageBox(hWnd, TEXT("Failed to create the FBX Manager"), TEXT("ALM"), MB_OK); } return hr; } bool operator < ( const FBXVTX &lValue, const FBXVTX &rValue) { if (lValue.Position.x != rValue.Position.x) return(lValue.Position.x < rValue.Position.x); if (lValue.Position.y != rValue.Position.y) return(lValue.Position.y < rValue.Position.y); if (lValue.Position.z != rValue.Position.z) return(lValue.Position.z < rValue.Position.z); if (lValue.TextureCoord.x != rValue.TextureCoord.x) return(lValue.TextureCoord.x < rValue.TextureCoord.x); if (lValue.TextureCoord.y != rValue.TextureCoord.y) return(lValue.TextureCoord.y < rValue.TextureCoord.y); if (lValue.Normal.x != rValue.Normal.x) return(lValue.Normal.x < rValue.Normal.x); if (lValue.Normal.y != rValue.Normal.y) return(lValue.Normal.y < rValue.Normal.y); return(lValue.Normal.z < rValue.Normal.z); }  
    • By Karol Plewa
      I am working on a project where I'm trying to use Forward Plus Rendering on point lights. I have a simple reflective scene with many point lights moving around it. I am using effects file (.fx) to keep my shaders in one place. I am having a problem with Compute Shader code. I cannot get it to work properly and calculate the tiles and lighting properly. 
      Is there anyone that is wishing to help me set up my compute shader?
      Thank you in advance for any replies and interest!
    • By turanszkij
      Hi, right now building my engine in visual studio involves a shader compiling step to build hlsl 5.0 shaders. I have a separate project which only includes shader sources and the compiler is the visual studio integrated fxc compiler. I like this method because on any PC that has visual studio installed, I can just download the solution from GitHub and everything just builds without additional dependencies and using the latest version of the compiler. I also like it because the shaders are included in the solution explorer and easy to browse, and double-click to open (opening files can be really a pain in the ass in visual studio run in admin mode). Also it's nice that VS displays the build output/errors in the output window.
      But now I have the HLSL 6 compiler and want to build hlsl 6 shaders as well (and as I understand I can also compile vulkan compatible shaders with it later). Any idea how to do this nicely? I want only a single project containing shader sources, like it is now, but build them for different targets. I guess adding different building projects would be the way to go that reference the shader source project? But how would they differentiate from shader type of the sources (eg. pixel shader, compute shader,etc.)? Now the shader building project contains for each shader the shader type, how can other building projects reference that?
      Anyone with some experience in this?
    • By osiris_dev
      Have a problem with reflection shader for D3D11:
      1>engine_render_d3d11_system.obj : error LNK2001: unresolved external symbol IID_ID3D11ShaderReflection
      I tried to add this:
      #include <D3D11Shader.h>
      #include <D3Dcompiler.h>
      #include <D3DCompiler.inl>
      #pragma comment(lib, "D3DCompiler.lib")
      //#pragma comment(lib, "D3DCompiler_47.lib")
      As MSDN tells me but still no fortune. I think lot of people did that already, what I missing?
      I also find this article http://mattfife.com/?p=470
      where recommend to use SDK headers and libs before Wind SDK, but I am not using DirectX SDK for this project at all, should I?
    • By trojanfoe
      Hi there, this is my first post in what looks to be a very interesting forum.
      I am using DirectXTK to put together my 2D game engine but would like to use the GPU depth buffer in order to avoid sorting back-to-front on the CPU and I think I also want to use GPU instancing, so can I do that with SpriteBatch or am I looking at implementing my own sprite rendering?
      Thanks in advance!
  • Advertisement