• 12
• 15
• 19
• 27
• 9
• ### Similar Content

• By abarnes
Hello All!
I am currently pursuing a degree in video game programming, so far I have completed an intro to programming course and object oriented programming course. Both were taught using C++ as the programming langauge which I know is very popular for game development, but in these classes we do not actually do any game development. I would like to start to build my skills with C++ for game development as that is a common required thing for a job and am looking for ways to do this. Any recommendations such as books to read or youtube videos to watch will be greatly appreciated!
• By Orella
I'm having problems rotating GameObjects in my engine. I'm trying to rotate in 2 ways.
I'm using MathGeoLib to calculate maths in the engine.
First way: Rotates correctly around axis but if I want to rotate back, if I don't do it following the inverse order then rotation doesn't work properly.
e.g:
Rotate X axis 50 degrees, Rotate Y axis 30 degrees -> Rotate Y axis -50 degrees, Rotate X axis -30 degrees. Works.
Rotate X axis 50 degrees, Rotate Y axis 30 degrees -> Rotate X axis -50 degrees, Rotate Y axis -30 degrees. Doesn't.

Code:
void ComponentTransform::SetRotation(float3 euler_rotation) { float3 diff = euler_rotation - editor_rotation; editor_rotation = euler_rotation; math::Quat mod = math::Quat::FromEulerXYZ(diff.x * DEGTORAD, diff.y * DEGTORAD, diff.z * DEGTORAD); quat_rotation = quat_rotation * mod; UpdateMatrix();  } Second way: Starts rotating good around axis but after rotating some times, then it stops to rotate correctly around axis, but if I rotate it back regardless of the rotation order it works, not like the first way.

Code:
void ComponentTransform::SetRotation(float3 euler_rotation) { editor_rotation = euler_rotation; quat_rotation = math::Quat::FromEulerXYZ(euler_rotation.x * DEGTORAD, euler_rotation.y * DEGTORAD, euler_rotation.z * DEGTORAD); UpdateMatrix();  }
Rest of code:
#define DEGTORAD 0.0174532925199432957f void ComponentTransform::UpdateMatrix() { if (!this->GetGameObject()->IsParent()) { //Get parent transform component ComponentTransform* parent_transform = (ComponentTransform*)this->GetGameObject()->GetParent()->GetComponent(Component::CompTransform); //Create matrix from position, rotation(quaternion) and scale transform_matrix = math::float4x4::FromTRS(position, quat_rotation, scale); //Multiply the object transform by parent transform transform_matrix = parent_transform->transform_matrix * transform_matrix; //If object have childs, call this function in childs objects for (std::list<GameObject*>::iterator it = this->GetGameObject()->childs.begin(); it != this->GetGameObject()->childs.end(); it++) { ComponentTransform* child_transform = (ComponentTransform*)(*it)->GetComponent(Component::CompTransform); child_transform->UpdateMatrix(); } } else { //Create matrix from position, rotation(quaternion) and scale transform_matrix = math::float4x4::FromTRS(position, quat_rotation, scale); //If object have childs, call this function in childs objects for (std::list<GameObject*>::iterator it = this->GetGameObject()->childs.begin(); it != this->GetGameObject()->childs.end(); it++) { ComponentTransform* child_transform = (ComponentTransform*)(*it)->GetComponent(Component::CompTransform); child_transform->UpdateMatrix(); } } } MathGeoLib: Quat MUST_USE_RESULT Quat::FromEulerXYZ(float x, float y, float z) { return (Quat::RotateX(x) * Quat::RotateY(y) * Quat::RotateZ(z)).Normalized(); } Quat MUST_USE_RESULT Quat::RotateX(float angle) { return Quat(float3(1,0,0), angle); } Quat MUST_USE_RESULT Quat::RotateY(float angle) { return Quat(float3(0,1,0), angle); } Quat MUST_USE_RESULT Quat::RotateZ(float angle) { return Quat(float3(0,0,1), angle); } Quat(const float3 &rotationAxis, float rotationAngleRadians) { SetFromAxisAngle(rotationAxis, rotationAngleRadians); } void Quat::SetFromAxisAngle(const float3 &axis, float angle) { assume1(axis.IsNormalized(), axis); assume1(MATH_NS::IsFinite(angle), angle); float sinz, cosz; SinCos(angle*0.5f, sinz, cosz); x = axis.x * sinz; y = axis.y * sinz; z = axis.z * sinz; w = cosz; } Any help?
Thanks.
• By owenjr
Hi there!
I am trying to implement a basic AI for a Turrets game in SFML and C++ and I have some problems.
This AI follows some waypoints stablished in a Bezier Courve.
In first place, this path was followed only by one enemy. For this purpose, the enemy has to calculate his distance between his actual position
to the next waypoint he has to pick.
If the distance is less than a specific value we stablish, then, we get to the next point. This will repeat until the final destination is reached. (in the submitting code, forget about the var m_go)

Okay, our problem gets when we spawn several enemies and all have to follow the same path, because it produces a bad visual effect (everyone gets upside another).
In order to solve this visual problem, we have decided to use a repulsion vector. The calculus gets like this:

As you can see, we calculate the repulsion vector with the inverse of the distance between the enemy and his nearest neighbor.
Then, we get it applying this to the "theorical" direction, by adding it, and we get a resultant, which is the direction that
our enemy has to follow to not "collide" with it's neighbors. But, our issue comes here:

The enemys get sepparated in the middle of the curve and, as we spawn more enemys, the speed of all of them increases dramatically (including the enemies that don't calculate the repuslion vector).
1 - Is it usual that this sepparation occours in the middle of the trajectory?
2 - Is it there a way to control this direction without the speed getting affected?
3 - Is it there any alternative to this theory?

I submit the code below (There is a variable in Spanish [resultante] which it means resultant in English):

if (!m_pathCompleted) { if (m_currentWP == 14 && m_cambio == true) { m_currentWP = 0; m_path = m_pathA; m_cambio = false; } if (m_neighbors.size() > 1) { for (int i = 0; i < m_neighbors.size(); i++) { if (m_enemyId != m_neighbors[i]->GetId()) { float l_nvx = m_neighbors[i]->GetSprite().getPosition().x - m_enemySprite.getPosition().x; float l_nvy = m_neighbors[i]->GetSprite().getPosition().y - m_enemySprite.getPosition().y; float distance = std::sqrt(l_nvx * l_nvx + l_nvy * l_nvy); if (distance < MINIMUM_NEIGHBOR_DISTANCE) { l_nvx *= -1; l_nvy *= -1; float l_vx = m_path[m_currentWP].x - m_enemySprite.getPosition().x; float l_vy = m_path[m_currentWP].y - m_enemySprite.getPosition().y; float l_resultanteX = l_nvx + l_vx; float l_resultanteY = l_nvy + l_vy; float l_waypointDistance = std::sqrt(l_resultanteX * l_resultanteX + l_resultanteY * l_resultanteY); if (l_waypointDistance < MINIMUM_WAYPOINT_DISTANCE) { if (m_currentWP == m_path.size() - 1) { std::cout << "\n"; std::cout << "[GAME OVER]" << std::endl; m_go = false; m_pathCompleted = true; } else { m_currentWP++; } } if (l_waypointDistance > MINIMUM_WAYPOINT_DISTANCE) { l_resultanteX = l_resultanteX / l_waypointDistance; l_resultanteY = l_resultanteY / l_waypointDistance; m_enemySprite.move(ENEMY_SPEED * l_resultanteX * dt, ENEMY_SPEED * l_resultanteY * dt); } } else { float vx = m_path[m_currentWP].x - m_enemySprite.getPosition().x; float vy = m_path[m_currentWP].y - m_enemySprite.getPosition().y; float len = std::sqrt(vx * vx + vy * vy); if (len < MINIMUM_WAYPOINT_DISTANCE) { if (m_currentWP == m_path.size() - 1) { std::cout << "\n"; std::cout << "[GAME OVER]" << std::endl; m_go = false; m_pathCompleted = true; } else { m_currentWP++; } } if (len > MINIMUM_WAYPOINT_DISTANCE) { vx = vx / len; vy = vy / len; m_enemySprite.move(ENEMY_SPEED * vx * dt, ENEMY_SPEED * vy * dt); } } } } } else { float vx = m_path[m_currentWP].x - m_enemySprite.getPosition().x; float vy = m_path[m_currentWP].y - m_enemySprite.getPosition().y; float len = std::sqrt(vx * vx + vy * vy); if (len < MINIMUM_WAYPOINT_DISTANCE) { if (m_currentWP == m_path.size() - 1) { std::cout << "\n"; std::cout << "[GAME OVER]" << std::endl; m_go = false; m_pathCompleted = true; } else { m_currentWP++; } } if (len > MINIMUM_WAYPOINT_DISTANCE) { vx = vx / len; vy = vy / len; m_enemySprite.move(ENEMY_SPEED * vx * dt, ENEMY_SPEED * vy * dt); } } }
¡¡Thank you very much in advance!!

• Overview
Welcome to the 2D UFO game guide using the Orx Portable Game Engine. My aim for this tutorial is to take you through all the steps to build a UFO game from scratch.
The aim of our game is to allow the player to control a UFO by applying physical forces to move it around. The player must collect pickups to increase their score to win.
I should openly acknowledge that this series is cheekily inspired by the 2D UFO tutorial written for Unity.
It makes an excellent comparison of the approaches between Orx and Unity. It is also a perfect way to highlight one of the major parts that makes Orx unique among other game engines, its Data Driven Configuration System.
You'll get very familiar with this system very soon. It's at the very heart of just about every game written using Orx.
If you are very new to game development, don't worry. We'll take it nice and slow and try to explain everything in very simple terms. The only knowledge you will need is some simple C++.
I'd like say a huge thank you to FullyBugged for providing the graphics for this series of articles.

What are we making?
Visit the video below to see the look and gameplay of the final game:
Getting Orx
The latest up to date version of Orx can be cloned from github and set up with:
git clone https://github.com/orx/orx.git After cloning, an $ORX environment variable will be created automatically for your system which will help with making game projects much easier. It will also create several IDE projects for your operating system: Visual Studio, Codelite, Code::Blocks, and gmake. These Orx projects will allow you to compile the Orx library for use in your own projects. And the$ORX environment variable means that your projects will know where to find the Orx library.
For more details on this step, visit http://orx-project.org/wiki/en/tutorials/cloning_orx_from_github at the Orx learning wiki.
Setting up a 2D UFO Project
Now the you have the Orx libraries cloned and compiled, you will need a blank project for your game. Supported options are: Visual Studio, CodeLite, Code::Blocks, XCode or gmake, depending on your operating system.
Once you have a game project, you can use it to work through the steps in this tutorial.
Orx provides a very nice system for auto creating game projects for you. In the root of the Orx repo, you will find either the init.bat (for Windows) or init.sh (Mac/Linux) command.
Create a project for our 2D game from the command line in the Orx folder and running:
init c:\temp\ufo or
init.sh ~/ufo Orx will create a project for each IDE supported by your OS at the specified location. You can copy this folder anywhere, and your project will always compile and link due to the \$ORX environment variable. It knows where the libraries and includes are for Orx.
Open your project using your favourite IDE from within the ufo/build folder.
When the blank template loads, there are two main folders to note in your solution:
config src Firstly, the src folder contains a single source file, ufo.cpp. This is where we will add the c++ code for the game. The config folder contains configuration files for our game.
What is config?
Orx is a data driven 2D game engine. Many of the elements in your game, like objects, spawners, music etc, do not need to be defined in code. They can be defined (or configured) using config files.
You can make a range of complex multi-part objects with special behaviours and effects in Orx, and bring them into your game with a single line of code. You'll see this in the following chapters of this guide.
There are three ufo config files in the config folder but for this guide, only one will actually be used in our game. This is:
ufo.ini All our game configuration will be done there.
Over in the Orx library repo folder under orx/code/bin, there are two other config files:
CreationTemplate.ini SettingsTemplate.ini These are example configs and they list all the properties and values that are available to you. We will mainly concentrate on referring to the CreationTemplate.ini, which is for objects, sounds, etc. It's good idea to include these two files into your project for easy reference.
Alternatively you can view these online at https://github.com/orx/orx/blob/master/code/bin/CreationTemplate.ini and here: https://github.com/orx/orx/blob/master/code/bin/SettingsTemplate.ini

The code template
Now to take a look at the basic ufo.cpp and see what is contained there.
The first function is the Init() function.
This function will execute when the game starts up. Here you can create objects have been defined in the config, or perform other set up tasks like handlers. We'll do both of these soon.
The Run() function is executed every main clock cycle. This is a good place to continually perform a task. Though there are better alternatives for this, and we will cover those later. This is mainly used to check for the quit key.
The Exit() function is where memory is cleaned up when your game quits. Orx cleans up nicely after itself. We won't use this function as part of this guide.
The Bootstrap() function is an optional function to use. This is used to tell Orx where to find the first config file for use in our game (ufo.ini). There is another way to do this, but for now, we'll use this function to inform Orx of the config.
Then of course, the main() function. We do not need to use this function in this guide.
Now that we have everything we need to get start, you should be able to compile successfully. Run the program and an Orx logo will appear slowly rotating.

Great. So now you have everything you need to start building the UFO game.

Setting up the game assets
Our game will have a background, a UFO which the player will control, and some pickups that the player can collect.
The UFO will be controlled by the player using the cursor keys.
First you'll need the assets to make the game. You can download the file  assets-for-orx-ufo-game.zip which contains:
The background file (background.png):

The UFO and Pickup sprite images (ufo.png and pickup.png):

And a pickup sound effect (pickup.ogg):
pickup.ogg
Copy the .png files into your data/texture folder
Copy the .ogg file into your data/sound folder.
Now these files can be accessed by your project and included in the game.

Setting up the Playfield
We will start by setting up the background object. This is done using config.
Open the ufo.ini config file in your editor and add the following:

[BackgroundGraphic] Texture = background.png Pivot = center
The BackgroundGraphic defined here is called a Graphic Section. It has two properties defined. The first is Texture which has been set as background.png.
The Orx library knows where to find this image, due to the properties set in the Resource section:

[Resource] Texture = ../../data/texture
So any texture files that are required (just like in our BackgroundGraphic section) will be located in the ../../data/texture folder.
The second parameter is Pivot. A pivot is the handle (or sometimes “hotspot” in other frameworks). This is set to be center. The position is 0,0 by default, just like the camera. The effect is to ensure the background sits in the center of our game window.
There are other values available for Pivot. To see the list of values, open the CreationTemplate.ini file in your editor. Scroll to the GraphicTemplate section and find Pivot in the list. There you can see all the possible values that could be used.
top left is also a typical value.
We need to define an object that will make use of this graphic. This will be the actual entity that is used in the game:

[BackgroundObject] Graphic = BackgroundGraphic Position = (0, 0, 0)
The Graphic property is the section BackgroundGraphic that we defined earlier. Our object will use that graphic.
The second property is the Position. In our world, this object will be created at (0, 0, 0). In Orx, the coordinates are (x, y, z). It may seem strange that Orx, being a 2D game engine has a Z axis. Actually Orx is 2.5D. It respects the Z axis for objects, and can use this for layering above or below other objects in the game.
To make the object appear in our game, we will add a line of code in our source file to create it.
In the Init() function of ufo.cpp, remove the default line:
orxObject_CreateFromConfig("Object"); and replace it with:
orxObject_CreateFromConfig("BackgroundObject"); Compile and run.
The old spinning logo is now replaced with a nice tiled background object.

Next, the ufo object is required. This is what the player will control. This will be covered in Part 2.
• By yyam

Hey there! I released my game, Hedgehogs Can Fly, on GameJolt today! It's a cute, 2D physics-platformer where you try to fling a hedgehog through tricky levels to get to the finish line. I wrote it from scratch in C++ with SFML. There are multiple types of terrain each with different properties and effects making for some interesting level design. The physics/level code also allows for free-form terrain that isn't constrained to a tile grid. The levels are loaded from color-coded image files, I have an entry in the devlog on the GameJolt page explaining how it all works!
If these screenshots look cool, visit the GameJolt page here (With Trailer Video!)
Screenshots incoming...

Have a nice day

# C++ Caching thread harms render loop performance

## Recommended Posts

Hi,

In my image-based renderer, I want to implement a cache that prefetches images from a neighbourhood for rapid retrieval.

I have a main render loop which has to run at 90FPS (VR), and another caching thread which is supposed to run in the background. However, when I change my position, new images are loaded by the cache thread and it often spikes cpu usage to the point where my render thread suffers. This happens even though my render loop is not synchronised with the caching thread. If an image is not in cache and it is supposed to be rendered, it just returns an empty one for the current frame. Nonetheless, I can still observe stuttering when this happens. When I move slowly it is fine however.

When I put a sleep(100) inside my caching thread, the stuttering does not occur, but ofcourse the caching is also a lot slower.

Any ideas why this happens and how I can solve this? My main theory now is that the caching thread performs a lot of memory accesses to load the images. As RAM only has one address line, other threads also suffer. But how can I ever get around this?

Edited by godmodder

##### Share on other sites

Hi,

I think you are right about the root cause of the problem.

I have no experience on this topic:

But I am thinking that the caching thread might have to do its work based on a priority list.

Then images which was skipped in one loop gets a high priority in the next. And then some sort of max work load for the cache system.

Another option could be to have the main thread control the cache system so it is only running when the GPU is busy and the CPU might have less to do. I know it kind of kills the idea of concurrent processing, but it might be use full to for instance trigger every processing loop in the cache system.

Another though:

How many threads are accessing the Hard disc? If you have many access active at the same time. The hard disc might spend a lot of time seeking from one file to the other and back again.

Just some thoughts, hope it pushes your brain work in the right direction :-)

/Kim

##### Share on other sites

How does your caching thread know when to stop doing work and idle?

##### Share on other sites
50 minutes ago, ApochPiQ said:

How does your caching thread know when to stop doing work and idle?

It observes the current position and caches images around that point in concentric circles. I have set a manual threshold so that it caches only e.g. 5 circles. Every time a significant change in position occurs, the cached area moves with it. Some items will already be in cache, others will have to be loaded or deleted.

1 hour ago, kikr4000 said:

Then images which was skipped in one loop gets a high priority in the next. And then some sort of max work load for the cache system.

I see what you mean. The sleep() I put in the caching thread sort of reduces the max work the thread can do in a certain amount of time in a crude manner and it does indeed seem to help. I have also played with thread priorities a bit, but this does not seem to help. I've always thought the main thread would take priority and just push the caching thread to the background, but apparently that's not how it works. This puzzles me... Isn't this the whole point of priorities?

1 hour ago, kikr4000 said:

How many threads are accessing the Hard disc?

Only the caching thread reads jpeg files from disk. This only takes a fraction of the time compared to the decoding of these though.

I don't understand why the caching thread doesn't just yield when set to a lower priority. It is perfectly fine if it caches fewer images this way, but the rendering should never slow down for it. Surely there exists a mechanism for this no?

EDIT: I'm starting to think that thread priority only applies to raw CPU time and that threads compete equally for memory accesses. This sounds counter-intuitive to me, however.

Edited by godmodder

##### Share on other sites

Look into priority inversion - it sounds like you have stumbled across a classic case of it :-)

What happens if you do things a little more lazily, and only re-trigger caching when your position moves, say, 150 units? (Or some other number that makes sense in your coordinate space.)

##### Share on other sites

Maybe you need a more advanced management/ caching strategy in which your caching thread and your render thread have as less friction as possible. The first question is 'who owns' the memory? I would say that your render thread needs to own the storage that maintains the images so caching is just a visitor here that potentially could set some kind of flags that tells render-thread that there isnt an image yet so it could pass over that image to the next one. Checking a bit flag is insofar atomic that there couldnt happen a break between writing bytes so you might not need any interlocked ops here.

Caching thread would know need to kind of responsibilities, tagging memory as obsolete and loading images from disk in the background where I would go for some package/ memory mapping approach rather than loading single files.

A second good caching strategy is to encounter an access timestamp and remove data from cache as needed but as few as necessary and from the oldest access upwards. The propability is very high that if you swing your head left, you will far or less move it back to the right. This would also limit the number of cache misses due to heavy move your head arround. This could otherwise cause your cache to load images that have become obsolete in next frame because you already moved away but then returned so need to cache this again