OpenGL OpenGL 2D GUI system question

Recommended Posts

hi all,

i am trying to build an OpenGL 2D GUI system, (yeah yeah, i know i should not be re inventing the wheel, but this is for educational and some other purpose only),
i have built GUI system before using 2D systems such as that of HTML/JS canvas, but in 2D system, i can directly match a mouse coordinates to the actual graphic coordinates with additional computation for screen size/ratio/scale ofcourse.

now i want to port it to OpenGL, i know that to render a 2D object in OpenGL we specify coordiantes in Clip space or use the orthographic projection, now heres what i need help about.

1. what is the right way of rendering the GUI? is it thru drawing in clip space or switching to ortho projection?

2. from screen coordinates (top left is 0,0 nd bottom right is width height), how can i map the mouse coordinates to OpenGL 2D so that mouse events such as button click works? In consideration ofcourse to the current screen/size dimension.

3. when let say if the screen size/dimension is different, how to handle this? in my previous javascript 2D engine using canvas, i just have my working coordinates and then just perform the bitblk or copying my working canvas to screen canvas and scale the mouse coordinates from there, in OpenGL how to work on a multiple screen sizes (more like an OpenGL ES question).

lastly, if you guys know any books, resources, links or tutorials that handle or discuss this, i found one with marekknows opengl game engine website but its not free,

Just let me know. Did not have any luck finding resource in google for writing our own OpenGL GUI framework.

IF there are no any available online, just let me know, what things do i need to look into for OpenGL and i will study them one by one to make it work.

thank you, and looking forward to positive replies.

Share this post


Link to post
Share on other sites

No no no, you can pass pixel coords to vertex shader and there recalculate actual vertex clip position on screen not to mention y axis is flipped so you start from y=0 at bottom left corner

 

So how to do that in shader well first of all you pass vertex pixel coords then you pass screen size in pixels then you make something like nv.x = v.x / screen_width to get percentage of screen coords this should give you a number from 0..1 then you need to multiple it by 0.5 and subtract it by -1??? I really forgot how to do this anyway you need to end with a number between -1 and 1 or was it 0.5 as I said I'm on the phone now and can't actually check that for code let others think

Share this post


Link to post
Share on other sites

Store the coordinates in screen coordinates. Use this to check against mouse position.

Set up a VAO, and VBO with a rectangle only 1.0f by 1.0f, and 0.0f as the depth. You can also disable depth before rendering, and enabling it again after.

Translate the model matrix (intialized to identity matrix) by (xPos, yPos, 0.0f).

Scale the model matrix by (width, height, 1.0f).

Multiply the projection matrix (use ortho for 2D that doesn't ever need to simulate depth) by the model matrix. Then send that one resulting matrix to the shader.

These are the steps I use, the first one ensures that the mouse checks pass. The others ensure that the sprite renders at the same position.

Edited by Yxjmir

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Forum Statistics

    • Total Topics
      628663
    • Total Posts
      2984111
  • Similar Content

    • By hiya83
      Hey, I was wondering if on mobile development (Android mainly but iOS as well if you know of it), if there is a GPUView equivalent for whole system debugging so we can figure out if the CPU/GPU are being pipelined efficiently, if there are bubbles, etc. Also slightly tangent question, but do mobile GPU's have a DMA engine exposed as a dedicated Transfer Queue for Vulkan?
    • By Vortez
      Hi guys, im having a little problem fixing a bug in my program since i multi-threaded it. The app is a little video converter i wrote for fun. To help you understand the problem, ill first explain how the program is made. Im using Delphi to do the GUI/Windows part of the code, then im loading a c++ dll for the video conversion. The problem is not related to the video conversion, but with OpenGL only. The code work like this:

       
      DWORD WINAPI JobThread(void *params) { for each files { ... _ConvertVideo(input_name, output_name); } } void EXP_FUNC _ConvertVideo(char *input_fname, char *output_fname) { // Note that im re-initializing and cleaning up OpenGL each time this function is called... CGLEngine GLEngine; ... // Initialize OpenGL GLEngine.Initialize(render_wnd); GLEngine.CreateTexture(dst_width, dst_height, 4); // decode the video and render the frames... for each frames { ... GLEngine.UpdateTexture(pY, pU, pV); GLEngine.Render(); } cleanup: GLEngine.DeleteTexture(); GLEngine.Shutdown(); // video cleanup code... }  
      With a single thread, everything work fine. The problem arise when im starting the thread for a second time, nothing get rendered, but the encoding work fine. For example, if i start the thread with 3 files to process, all of them render fine, but if i start the thread again (with the same batch of files or not...), OpenGL fail to render anything.
      Im pretty sure it has something to do with the rendering context (or maybe the window DC?). Here a snippet of my OpenGL class:
      bool CGLEngine::Initialize(HWND hWnd) { hDC = GetDC(hWnd); if(!SetupPixelFormatDescriptor(hDC)){ ReleaseDC(hWnd, hDC); return false; } hRC = wglCreateContext(hDC); wglMakeCurrent(hDC, hRC); // more code ... return true; } void CGLEngine::Shutdown() { // some code... if(hRC){wglDeleteContext(hRC);} if(hDC){ReleaseDC(hWnd, hDC);} hDC = hRC = NULL; }  
      The full source code is available here. The most relevant files are:
      -OpenGL class (header / source)
      -Main code (header / source)
       
      Thx in advance if anyone can help me.
    • By ginxx tripplex
      I get 
      Shader error in 'Volund/Standard Character (Specular)': invalid subscript 'worldPos' at Assets/Features/Shared/Volund_UnityStandardCore.cginc(252) (on d3d11)
      Compiling Vertex program with DIRECTIONAL
      Platform defines: UNITY_NO_DXT5nm UNITY_ENABLE_REFLECTION_BUFFERS UNITY_USE_DITHER_MASK_FOR_ALPHABLENDED_SHADOWS UNITY_PBS_USE_BRDF1 UNITY_SPECCUBE_BOX_PROJECTION UNITY_SPECCUBE_BLENDING UNITY_ENABLE_DETAIL_NORMALMAP SHADER_API_DESKTOP UNITY_COLORSPACE_GAMMA UNITY_LIGHT_PROBE_PROXY_VOLUME
       
      Here is my shader code on Volund_UnityStandardCore.cginc
       
      // Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
      // Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
      #ifndef UNITY_STANDARD_CORE_INCLUDED
      #define UNITY_STANDARD_CORE_INCLUDED
      #include "Volund_UnityStandardInput.cginc"
      #include "UnityCG.cginc"
      #include "UnityShaderVariables.cginc"
      #include "UnityStandardConfig.cginc"
      #include "UnityPBSLighting.cginc"
      #include "UnityStandardUtils.cginc"
      #include "UnityStandardBRDF.cginc"
      #include "AutoLight.cginc"
      #if defined(ORTHONORMALIZE_TANGENT_BASE)
          #undef UNITY_TANGENT_ORTHONORMALIZE
          #define UNITY_TANGENT_ORTHONORMALIZE 1
      #endif
      //-------------------------------------------------------------------------------------
      // counterpart for NormalizePerPixelNormal
      // skips normalization per-vertex and expects normalization to happen per-pixel
      half3 NormalizePerVertexNormal (half3 n)
      {
          #if (SHADER_TARGET < 30)
              return normalize(n);
          #else
              return n; // will normalize per-pixel instead
          #endif
      }
      half3 NormalizePerPixelNormal (half3 n)
      {
          #if (SHADER_TARGET < 30)
              return n;
          #else
              return normalize(n);
          #endif
      }
      //-------------------------------------------------------------------------------------
      UnityLight MainLight (half3 normalWorld)
      {
          UnityLight l;
          #ifdef LIGHTMAP_OFF
              
              l.color = _LightColor0.rgb;
              l.dir = _WorldSpaceLightPos0.xyz;
              l.ndotl = LambertTerm (normalWorld, l.dir);
          #else
              // no light specified by the engine
              // analytical light might be extracted from Lightmap data later on in the shader depending on the Lightmap type
              l.color = half3(0.f, 0.f, 0.f);
              l.ndotl  = 0.f;
              l.dir = half3(0.f, 0.f, 0.f);
          #endif
          return l;
      }
      UnityLight AdditiveLight (half3 normalWorld, half3 lightDir, half atten)
      {
          UnityLight l;
          l.color = _LightColor0.rgb;
          l.dir = lightDir;
          #ifndef USING_DIRECTIONAL_LIGHT
              l.dir = NormalizePerPixelNormal(l.dir);
          #endif
          l.ndotl = LambertTerm (normalWorld, l.dir);
          // shadow the light
          l.color *= atten;
          return l;
      }
      UnityLight DummyLight (half3 normalWorld)
      {
          UnityLight l;
          l.color = 0;
          l.dir = half3 (0,1,0);
          l.ndotl = LambertTerm (normalWorld, l.dir);
          return l;
      }
      UnityIndirect ZeroIndirect ()
      {
          UnityIndirect ind;
          ind.diffuse = 0;
          ind.specular = 0;
          return ind;
      }
      //-------------------------------------------------------------------------------------
      // Common fragment setup
      half3 WorldNormal(half4 tan2world[3])
      {
          return normalize(tan2world[2].xyz);
      }
      #ifdef _TANGENT_TO_WORLD
          half3x3 ExtractTangentToWorldPerPixel(half4 tan2world[3])
          {
              half3 t = tan2world[0].xyz;
              half3 b = tan2world[1].xyz;
              half3 n = tan2world[2].xyz;
          #if UNITY_TANGENT_ORTHONORMALIZE
              n = NormalizePerPixelNormal(n);
              // ortho-normalize Tangent
              t = normalize (t - n * dot(t, n));
              // recalculate Binormal
              half3 newB = cross(n, t);
              b = newB * sign (dot (newB, b));
          #endif
              return half3x3(t, b, n);
          }
      #else
          half3x3 ExtractTangentToWorldPerPixel(half4 tan2world[3])
          {
              return half3x3(0,0,0,0,0,0,0,0,0);
          }
      #endif
      #ifdef _PARALLAXMAP
          #define IN_VIEWDIR4PARALLAX(i) NormalizePerPixelNormal(half3(i.tangentToWorldAndParallax[0].w,i.tangentToWorldAndParallax[1].w,i.tangentToWorldAndParallax[2].w))
          #define IN_VIEWDIR4PARALLAX_FWDADD(i) NormalizePerPixelNormal(i.viewDirForParallax.xyz)
      #else
          #define IN_VIEWDIR4PARALLAX(i) half3(0,0,0)
          #define IN_VIEWDIR4PARALLAX_FWDADD(i) half3(0,0,0)
      #endif
      #if UNITY_SPECCUBE_BOX_PROJECTION
          #define IN_WORLDPOS(i) i.posWorld
      #else
          #define IN_WORLDPOS(i) half3(0,0,0)
      #endif
      #define IN_LIGHTDIR_FWDADD(i) half3(i.tangentToWorldAndLightDir[0].w, i.tangentToWorldAndLightDir[1].w, i.tangentToWorldAndLightDir[2].w)
      #define FRAGMENT_SETUP(x) FragmentCommonData x = \
          FragmentSetup(i.tex, i.eyeVec, WorldNormal(i.tangentToWorldAndParallax), IN_VIEWDIR4PARALLAX(i), ExtractTangentToWorldPerPixel(i.tangentToWorldAndParallax), IN_WORLDPOS(i), i.pos.xy);
      #define FRAGMENT_SETUP_FWDADD(x) FragmentCommonData x = \
          FragmentSetup(i.tex, i.eyeVec, WorldNormal(i.tangentToWorldAndLightDir), IN_VIEWDIR4PARALLAX_FWDADD(i), ExtractTangentToWorldPerPixel(i.tangentToWorldAndLightDir), half3(0,0,0), i.pos.xy);
      struct FragmentCommonData
      {
          half3 diffColor, specColor;
          // Note: oneMinusRoughness & oneMinusReflectivity for optimization purposes, mostly for DX9 SM2.0 level.
          // Most of the math is being done on these (1-x) values, and that saves a few precious ALU slots.
          half oneMinusReflectivity, oneMinusRoughness;
          half3 normalWorld, eyeVec, posWorld;
          half alpha;
      };
      #ifndef UNITY_SETUP_BRDF_INPUT
          #define UNITY_SETUP_BRDF_INPUT SpecularSetup
      #endif
      inline FragmentCommonData SpecularSetup (float4 i_tex)
      {
          half4 specGloss = SpecularGloss(i_tex.xy);
          half3 specColor = specGloss.rgb;
          half oneMinusRoughness = specGloss.a;
      #ifdef SMOOTHNESS_IN_ALBEDO
          half3 albedo = Albedo(i_tex, /*out*/ oneMinusRoughness);
      #else
          half3 albedo = Albedo(i_tex);
      #endif
          half oneMinusReflectivity;
          half3 diffColor = EnergyConservationBetweenDiffuseAndSpecular (albedo, specColor, /*out*/ oneMinusReflectivity);
          
          FragmentCommonData o = (FragmentCommonData)0;
          o.diffColor = diffColor;
          o.specColor = specColor;
          o.oneMinusReflectivity = oneMinusReflectivity;
          o.oneMinusRoughness = oneMinusRoughness;
          return o;
      }
      inline FragmentCommonData MetallicSetup (float4 i_tex)
      {
          half2 metallicGloss = MetallicGloss(i_tex.xy);
          half metallic = metallicGloss.x;
          half oneMinusRoughness = metallicGloss.y;
      #ifdef SMOOTHNESS_IN_ALBEDO
          half3 albedo = Albedo(i_tex, /*out*/ oneMinusRoughness);
      #else
          half3 albedo = Albedo(i_tex);
      #endif
          half oneMinusReflectivity;
          half3 specColor;
          half3 diffColor = DiffuseAndSpecularFromMetallic (albedo, metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity);
          FragmentCommonData o = (FragmentCommonData)0;
          o.diffColor = diffColor;
          o.specColor = specColor;
          o.oneMinusReflectivity = oneMinusReflectivity;
          o.oneMinusRoughness = oneMinusRoughness;
          return o;

      inline FragmentCommonData FragmentSetup (float4 i_tex, half3 i_eyeVec, half3 i_normalWorld, half3 i_viewDirForParallax, half3x3 i_tanToWorld, half3 i_posWorld, float2 iPos)
      {
          i_tex = Parallax(i_tex, i_viewDirForParallax);
          half alpha = Alpha(i_tex.xy);
          #if defined(_ALPHATEST_ON)
              clip (alpha - _Cutoff);
          #endif
          #ifdef _NORMALMAP
              half3 normalWorld = NormalizePerPixelNormal(mul(NormalInTangentSpace(i_tex), i_tanToWorld)); // @TODO: see if we can squeeze this normalize on SM2.0 as well
          #else
              // Should get compiled out, isn't being used in the end.
               half3 normalWorld = i_normalWorld;
          #endif
          
          half3 eyeVec = i_eyeVec;
          eyeVec = NormalizePerPixelNormal(eyeVec);

          FragmentCommonData o = UNITY_SETUP_BRDF_INPUT (i_tex);
          o.normalWorld = normalWorld;
          o.eyeVec = eyeVec;
          o.posWorld = i_posWorld;
          // NOTE: shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = OneMinusSrcAlpha)
          o.diffColor = PreMultiplyAlpha (o.diffColor, alpha, o.oneMinusReflectivity, /*out*/ o.alpha);
          return o;
      }
      inline UnityGI FragmentGI (
          float3 posWorld, 
          half occlusion, half4 i_ambientOrLightmapUV, half atten, half oneMinusRoughness, half3 normalWorld, half3 eyeVec,
          UnityLight light )
      {
          UnityGI d;
          ResetUnityGI(d);
          d.light = light;
          d.worldPos = posWorld;
          d.worldViewDir = -eyeVec;
          d.atten = atten;
          #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
              d.ambient = 0;
              d.lightmapUV = i_ambientOrLightmapUV;
          #else
              d.ambient = i_ambientOrLightmapUV.rgb;
              d.lightmapUV = 0;
          #endif
              //change the above code with this
          #if UNITY_SPECCUBE_BLENDING || UNITY_SPECCUBE_BOX_PROJECTION
                  d.boxMin[0] = unity_SpecCube0_BoxMin;
                  d.boxMin[1] = unity_SpecCube1_BoxMin;
          #endif
          #if UNITY_SPECCUBE_BOX_PROJECTION
                  d.boxMax[0] = unity_SpecCube0_BoxMax;
                  d.boxMax[1] = unity_SpecCube1_BoxMax;
                  d.probePosition[0] = unity_SpecCube0_ProbePosition;
                  d.probePosition[1] = unity_SpecCube1_ProbePosition;
          #endif
      //lets change the code
              //d.boxMax[0] = unity_SpecCube0_BoxMax;
              //d.boxMin[0] = unity_SpecCube0_BoxMin;
              //d.probePosition[0] = unity_SpecCube0_ProbePosition;
              //d.probeHDR[0] = unity_SpecCube0_HDR;
              //d.boxMax[1] = unity_SpecCube1_BoxMax;
              //d.boxMin[1] = unity_SpecCube1_BoxMin;
              //d.probePosition[1] = unity_SpecCube1_ProbePosition;
              //d.probeHDR[1] = unity_SpecCube1_HDR;
              return UnityGlobalIllumination(
                  d, occlusion, oneMinusRoughness, normalWorld);
          }

          
          
      //-------------------------------------------------------------------------------------
      half4 OutputForward (half4 output, half alphaFromSurface)
      {
          #if defined(_ALPHABLEND_ON) || defined(_ALPHAPREMULTIPLY_ON)
              output.a = alphaFromSurface;
          #else
              UNITY_OPAQUE_ALPHA(output.a);
          #endif
          return output;
      }
      // ------------------------------------------------------------------
      //  Base forward pass (directional light, emission, lightmaps, ...)
      struct VertexOutputForwardBase
      {
          float4 pos                            : SV_POSITION;
          float4 tex                            : TEXCOORD0;
          half3 eyeVec                         : TEXCOORD1;
          half4 tangentToWorldAndParallax[3]    : TEXCOORD2;    // [3x3:tangentToWorld | 1x3:viewDirForParallax]
          half4 ambientOrLightmapUV            : TEXCOORD5;    // SH or Lightmap UV
          SHADOW_COORDS(6)
          UNITY_FOG_COORDS(7)
          // next ones would not fit into SM2.0 limits, but they are always for SM3.0+
          #if UNITY_SPECCUBE_BOX_PROJECTION
              float3 posWorld                    : TEXCOORD8;
          #endif
      };
      VertexOutputForwardBase vertForwardBase (VertexInput v) 
      {
          VertexOutputForwardBase o;
          UNITY_INITIALIZE_OUTPUT(VertexOutputForwardBase, o);
          float4 posWorld = mul(unity_ObjectToWorld, v.vertex);
          #if UNITY_SPECCUBE_BOX_PROJECTION
              o.posWorld = posWorld.xyz;
          #endif
          o.pos = UnityObjectToClipPos(v.vertex);
          o.tex = TexCoords(v);
          o.eyeVec = NormalizePerVertexNormal(posWorld.xyz - _WorldSpaceCameraPos);
          float3 normalWorld = UnityObjectToWorldNormal(v.normal);
          #ifdef _TANGENT_TO_WORLD
              float4 tangentWorld = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);
              float3x3 tangentToWorld = CreateTangentToWorldPerVertex(normalWorld, tangentWorld.xyz, tangentWorld.w);
              o.tangentToWorldAndParallax[0].xyz = tangentToWorld[0];
              o.tangentToWorldAndParallax[1].xyz = tangentToWorld[1];
              o.tangentToWorldAndParallax[2].xyz = tangentToWorld[2];
          #else
              o.tangentToWorldAndParallax[0].xyz = 0;
              o.tangentToWorldAndParallax[1].xyz = 0;
              o.tangentToWorldAndParallax[2].xyz = normalWorld;
          #endif
          //We need this for shadow receving
          TRANSFER_SHADOW(o);
          // Static lightmaps
          #ifndef LIGHTMAP_OFF
              o.ambientOrLightmapUV.xy = v.uv1.xy * unity_LightmapST.xy + unity_LightmapST.zw;
              o.ambientOrLightmapUV.zw = 0;
          // Sample light probe for Dynamic objects only (no static or dynamic lightmaps)
          #elif UNITY_SHOULD_SAMPLE_SH
              #if UNITY_SAMPLE_FULL_SH_PER_PIXEL
                  o.ambientOrLightmapUV.rgb = 0;
              #elif (SHADER_TARGET < 30)
                  o.ambientOrLightmapUV.rgb = ShadeSH9(half4(normalWorld, 1.0));
              #else
                  // Optimization: L2 per-vertex, L0..L1 per-pixel
                  o.ambientOrLightmapUV.rgb = ShadeSH3Order(half4(normalWorld, 1.0));
              #endif
              // Add approximated illumination from non-important point lights
              #ifdef VERTEXLIGHT_ON
                  o.ambientOrLightmapUV.rgb += Shade4PointLights (
                      unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
                      unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
                      unity_4LightAtten0, posWorld, normalWorld);
              #endif
          #endif
          #ifdef DYNAMICLIGHTMAP_ON
              o.ambientOrLightmapUV.zw = v.uv2.xy * unity_DynamicLightmapST.xy + unity_DynamicLightmapST.zw;
          #endif
          
          #ifdef _PARALLAXMAP
              TANGENT_SPACE_ROTATION;
              half3 viewDirForParallax = mul (rotation, ObjSpaceViewDir(v.vertex));
              o.tangentToWorldAndParallax[0].w = viewDirForParallax.x;
              o.tangentToWorldAndParallax[1].w = viewDirForParallax.y;
              o.tangentToWorldAndParallax[2].w = viewDirForParallax.z;
          #endif
          
          UNITY_TRANSFER_FOG(o,o.pos);
          return o;
      }
      half4 fragForwardBase (VertexOutputForwardBase i, float face : VFACE) : SV_Target
      {
          // Experimental normal flipping
          if(_CullMode < 0.5f)
              i.tangentToWorldAndParallax[2].xyz *= face;
          
          FRAGMENT_SETUP(s)
          UnityLight mainLight = MainLight (s.normalWorld);
          half atten = SHADOW_ATTENUATION(i);
          half occlusion = Occlusion(i.tex.xy);
          
          UnityGI gi = FragmentGI (
              s.posWorld, occlusion, i.ambientOrLightmapUV, atten, s.oneMinusRoughness, s.normalWorld, s.eyeVec, mainLight);
          half4 c = UNITY_BRDF_PBS (s.diffColor, s.specColor, s.oneMinusReflectivity, s.oneMinusRoughness, s.normalWorld, -s.eyeVec, gi.light, gi.indirect);
          c.rgb += UNITY_BRDF_GI (s.diffColor, s.specColor, s.oneMinusReflectivity, s.oneMinusRoughness, s.normalWorld, -s.eyeVec, occlusion, gi);
          c.rgb += Emission(i.tex.xy);
          UNITY_APPLY_FOG(i.fogCoord, c.rgb);
          return OutputForward (c, s.alpha);
      }
      // ------------------------------------------------------------------
      //  Additive forward pass (one light per pass)
      struct VertexOutputForwardAdd
      {
          float4 pos                            : SV_POSITION;
          float4 tex                            : TEXCOORD0;
          half3 eyeVec                         : TEXCOORD1;
          half4 tangentToWorldAndLightDir[3]    : TEXCOORD2;    // [3x3:tangentToWorld | 1x3:lightDir]
          LIGHTING_COORDS(5,6)
          UNITY_FOG_COORDS(7)
          // next ones would not fit into SM2.0 limits, but they are always for SM3.0+
      #if defined(_PARALLAXMAP)
          half3 viewDirForParallax            : TEXCOORD8;
      #endif
      };
      VertexOutputForwardAdd vertForwardAdd (VertexInput v)
      {
          VertexOutputForwardAdd o;
          UNITY_INITIALIZE_OUTPUT(VertexOutputForwardAdd, o);
          float4 posWorld = mul(unity_ObjectToWorld, v.vertex);
          o.pos = UnityObjectToClipPos(v.vertex);
          o.tex = TexCoords(v);
          o.eyeVec = NormalizePerVertexNormal(posWorld.xyz - _WorldSpaceCameraPos);
          float3 normalWorld = UnityObjectToWorldNormal(v.normal);
          #ifdef _TANGENT_TO_WORLD
              float4 tangentWorld = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);
              float3x3 tangentToWorld = CreateTangentToWorldPerVertex(normalWorld, tangentWorld.xyz, tangentWorld.w);
              o.tangentToWorldAndLightDir[0].xyz = tangentToWorld[0];
              o.tangentToWorldAndLightDir[1].xyz = tangentToWorld[1];
              o.tangentToWorldAndLightDir[2].xyz = tangentToWorld[2];
          #else
              o.tangentToWorldAndLightDir[0].xyz = 0;
              o.tangentToWorldAndLightDir[1].xyz = 0;
              o.tangentToWorldAndLightDir[2].xyz = normalWorld;
          #endif
          //We need this for shadow receving
          TRANSFER_VERTEX_TO_FRAGMENT(o);
          float3 lightDir = _WorldSpaceLightPos0.xyz - posWorld.xyz * _WorldSpaceLightPos0.w;
          #ifndef USING_DIRECTIONAL_LIGHT
              lightDir = NormalizePerVertexNormal(lightDir);
          #endif
          o.tangentToWorldAndLightDir[0].w = lightDir.x;
          o.tangentToWorldAndLightDir[1].w = lightDir.y;
          o.tangentToWorldAndLightDir[2].w = lightDir.z;
          #ifdef _PARALLAXMAP
              TANGENT_SPACE_ROTATION;
              o.viewDirForParallax = mul (rotation, ObjSpaceViewDir(v.vertex));
          #endif
          
          UNITY_TRANSFER_FOG(o,o.pos);
          return o;
      }
      half4 fragForwardAdd (VertexOutputForwardAdd i, float face : VFACE) : SV_Target
      {
          // Experimental normal flipping
          if(_CullMode < 0.5f)
              i.tangentToWorldAndLightDir[2].xyz *= face;
          FRAGMENT_SETUP_FWDADD(s)
          UnityLight light = AdditiveLight (s.normalWorld, IN_LIGHTDIR_FWDADD(i), LIGHT_ATTENUATION(i));
          UnityIndirect noIndirect = ZeroIndirect ();
          half4 c = UNITY_BRDF_PBS (s.diffColor, s.specColor, s.oneMinusReflectivity, s.oneMinusRoughness, s.normalWorld, -s.eyeVec, light, noIndirect);
          
          UNITY_APPLY_FOG_COLOR(i.fogCoord, c.rgb, half4(0,0,0,0)); // fog towards black in additive pass
          return OutputForward (c, s.alpha);
      }
      // ------------------------------------------------------------------
      //  Deferred pass
      struct VertexOutputDeferred
      {
          float4 pos                            : SV_POSITION;
          float4 tex                            : TEXCOORD0;
          half3 eyeVec                         : TEXCOORD1;
          half4 tangentToWorldAndParallax[3]    : TEXCOORD2;    // [3x3:tangentToWorld | 1x3:viewDirForParallax]
          half4 ambientOrLightmapUV            : TEXCOORD5;    // SH or Lightmap UVs            
          #if UNITY_SPECCUBE_BOX_PROJECTION
              float3 posWorld                        : TEXCOORD6;
          #endif
      };
      VertexOutputDeferred vertDeferred (VertexInput v)
      {
          VertexOutputDeferred o;
          UNITY_INITIALIZE_OUTPUT(VertexOutputDeferred, o);
          float4 posWorld = mul(unity_ObjectToWorld, v.vertex);
          #if UNITY_SPECCUBE_BOX_PROJECTION
              o.posWorld = posWorld.xyz;
          #endif
          o.pos = UnityObjectToClipPos(v.vertex);
          o.tex = TexCoords(v);
          o.eyeVec = NormalizePerVertexNormal(posWorld.xyz - _WorldSpaceCameraPos);
          float3 normalWorld = UnityObjectToWorldNormal(v.normal);
          #ifdef _TANGENT_TO_WORLD
              float4 tangentWorld = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);
              float3x3 tangentToWorld = CreateTangentToWorldPerVertex(normalWorld, tangentWorld.xyz, tangentWorld.w);
              o.tangentToWorldAndParallax[0].xyz = tangentToWorld[0];
              o.tangentToWorldAndParallax[1].xyz = tangentToWorld[1];
              o.tangentToWorldAndParallax[2].xyz = tangentToWorld[2];
          #else
              o.tangentToWorldAndParallax[0].xyz = 0;
              o.tangentToWorldAndParallax[1].xyz = 0;
              o.tangentToWorldAndParallax[2].xyz = normalWorld;
          #endif
          #ifndef LIGHTMAP_OFF
              o.ambientOrLightmapUV.xy = v.uv1.xy * unity_LightmapST.xy + unity_LightmapST.zw;
              o.ambientOrLightmapUV.zw = 0;
          #elif UNITY_SHOULD_SAMPLE_SH
              #if (SHADER_TARGET < 30)
                  o.ambientOrLightmapUV.rgb = ShadeSH9(half4(normalWorld, 1.0));
              #else
                  // Optimization: L2 per-vertex, L0..L1 per-pixel
                  o.ambientOrLightmapUV.rgb = ShadeSH3Order(half4(normalWorld, 1.0));
              #endif
          #endif
          
          #ifdef DYNAMICLIGHTMAP_ON
              o.ambientOrLightmapUV.zw = v.uv2.xy * unity_DynamicLightmapST.xy + unity_DynamicLightmapST.zw;
          #endif
          
          #ifdef _PARALLAXMAP
              TANGENT_SPACE_ROTATION;
              half3 viewDirForParallax = mul (rotation, ObjSpaceViewDir(v.vertex));
              o.tangentToWorldAndParallax[0].w = viewDirForParallax.x;
              o.tangentToWorldAndParallax[1].w = viewDirForParallax.y;
              o.tangentToWorldAndParallax[2].w = viewDirForParallax.z;
          #endif
          
          return o;
      }
      void fragDeferred (
          VertexOutputDeferred i,
          out half4 outDiffuse : SV_Target0,            // RT0: diffuse color (rgb), occlusion (a)
          out half4 outSpecSmoothness : SV_Target1,    // RT1: spec color (rgb), smoothness (a)
          out half4 outNormal : SV_Target2,            // RT2: normal (rgb), --unused, very low precision-- (a) 
          out half4 outEmission : SV_Target3,            // RT3: emission (rgb), --unused-- (a)
          float face : VFACE
      )
      {
          #if (SHADER_TARGET < 30)
              outDiffuse = 1;
              outSpecSmoothness = 1;
              outNormal = 0;
              outEmission = 0;
              return;
          #endif
          // Experimental normal flipping
          if(_CullMode < 0.5f)
              i.tangentToWorldAndParallax[2].xyz *= face;
          FRAGMENT_SETUP(s)
          
          // no analytic lights in this pass
          UnityLight dummyLight = DummyLight (s.normalWorld);
          half atten = 1;
          
          half occlusion = Occlusion(i.tex.xy);
          // only GI
          UnityGI gi = FragmentGI (
              s.posWorld, occlusion, i.ambientOrLightmapUV, atten, s.oneMinusRoughness, s.normalWorld, s.eyeVec, dummyLight);
          half3 color = UNITY_BRDF_PBS (s.diffColor, s.specColor, s.oneMinusReflectivity, s.oneMinusRoughness, s.normalWorld, -s.eyeVec, gi.light, gi.indirect).rgb;
          color += UNITY_BRDF_GI (s.diffColor, s.specColor, s.oneMinusReflectivity, s.oneMinusRoughness, s.normalWorld, -s.eyeVec, occlusion, gi);
          #ifdef _EMISSION
              color += Emission (i.tex.xy);
          #endif
          #ifndef UNITY_HDR_ON
              color.rgb = exp2(-color.rgb);
          #endif
          outDiffuse = half4(s.diffColor, occlusion);
          outSpecSmoothness = half4(s.specColor, s.oneMinusRoughness);
          outNormal = half4(s.normalWorld*0.5+0.5,1);
          outEmission = half4(color, 1);
      }                    
                  
      #endif // UNITY_STANDARD_CORE_INCLUDED
       
      I really don't know what is happening there i've been stuck there for 2 days.
    • By DiligentDev
      This article uses material originally posted on Diligent Graphics web site.
      Introduction
      Graphics APIs have come a long way from small set of basic commands allowing limited control of configurable stages of early 3D accelerators to very low-level programming interfaces exposing almost every aspect of the underlying graphics hardware. Next-generation APIs, Direct3D12 by Microsoft and Vulkan by Khronos are relatively new and have only started getting widespread adoption and support from hardware vendors, while Direct3D11 and OpenGL are still considered industry standard. New APIs can provide substantial performance and functional improvements, but may not be supported by older hardware. An application targeting wide range of platforms needs to support Direct3D11 and OpenGL. New APIs will not give any advantage when used with old paradigms. It is totally possible to add Direct3D12 support to an existing renderer by implementing Direct3D11 interface through Direct3D12, but this will give zero benefits. Instead, new approaches and rendering architectures that leverage flexibility provided by the next-generation APIs are expected to be developed.
      There are at least four APIs (Direct3D11, Direct3D12, OpenGL/GLES, Vulkan, plus Apple's Metal for iOS and osX platforms) that a cross-platform 3D application may need to support. Writing separate code paths for all APIs is clearly not an option for any real-world application and the need for a cross-platform graphics abstraction layer is evident. The following is the list of requirements that I believe such layer needs to satisfy:
      Lightweight abstractions: the API should be as close to the underlying native APIs as possible to allow an application leverage all available low-level functionality. In many cases this requirement is difficult to achieve because specific features exposed by different APIs may vary considerably. Low performance overhead: the abstraction layer needs to be efficient from performance point of view. If it introduces considerable amount of overhead, there is no point in using it. Convenience: the API needs to be convenient to use. It needs to assist developers in achieving their goals not limiting their control of the graphics hardware. Multithreading: ability to efficiently parallelize work is in the core of Direct3D12 and Vulkan and one of the main selling points of the new APIs. Support for multithreading in a cross-platform layer is a must. Extensibility: no matter how well the API is designed, it still introduces some level of abstraction. In some cases the most efficient way to implement certain functionality is to directly use native API. The abstraction layer needs to provide seamless interoperability with the underlying native APIs to provide a way for the app to add features that may be missing. Diligent Engine is designed to solve these problems. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common C++ front-end for all supported platforms and provides interoperability with underlying native APIs. It also supports integration with Unity and is designed to be used as graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. Full source code is available for download at GitHub and is free to use.
      Overview
      Diligent Engine API takes some features from Direct3D11 and Direct3D12 as well as introduces new concepts to hide certain platform-specific details and make the system easy to use. It contains the following main components:
      Render device (IRenderDevice  interface) is responsible for creating all other objects (textures, buffers, shaders, pipeline states, etc.).
      Device context (IDeviceContext interface) is the main interface for recording rendering commands. Similar to Direct3D11, there are immediate context and deferred contexts (which in Direct3D11 implementation map directly to the corresponding context types). Immediate context combines command queue and command list recording functionality. It records commands and submits the command list for execution when it contains sufficient number of commands. Deferred contexts are designed to only record command lists that can be submitted for execution through the immediate context.
      An alternative way to design the API would be to expose command queue and command lists directly. This approach however does not map well to Direct3D11 and OpenGL. Besides, some functionality (such as dynamic descriptor allocation) can be much more efficiently implemented when it is known that a command list is recorded by a certain deferred context from some thread.
      The approach taken in the engine does not limit scalability as the application is expected to create one deferred context per thread, and internally every deferred context records a command list in lock-free fashion. At the same time this approach maps well to older APIs.
      In current implementation, only one immediate context that uses default graphics command queue is created. To support multiple GPUs or multiple command queue types (compute, copy, etc.), it is natural to have one immediate contexts per queue. Cross-context synchronization utilities will be necessary.
      Swap Chain (ISwapChain interface). Swap chain interface represents a chain of back buffers and is responsible for showing the final rendered image on the screen.
      Render device, device contexts and swap chain are created during the engine initialization.
      Resources (ITexture and IBuffer interfaces). There are two types of resources - textures and buffers. There are many different texture types (2D textures, 3D textures, texture array, cubmepas, etc.) that can all be represented by ITexture interface.
      Resources Views (ITextureView and IBufferView interfaces). While textures and buffers are mere data containers, texture views and buffer views describe how the data should be interpreted. For instance, a 2D texture can be used as a render target for rendering commands or as a shader resource.
      Pipeline State (IPipelineState interface). GPU pipeline contains many configurable stages (depth-stencil, rasterizer and blend states, different shader stage, etc.). Direct3D11 uses coarse-grain objects to set all stage parameters at once (for instance, a rasterizer object encompasses all rasterizer attributes), while OpenGL contains myriad functions to fine-grain control every individual attribute of every stage. Both methods do not map very well to modern graphics hardware that combines all states into one monolithic state under the hood. Direct3D12 directly exposes pipeline state object in the API, and Diligent Engine uses the same approach.
      Shader Resource Binding (IShaderResourceBinding interface). Shaders are programs that run on the GPU. Shaders may access various resources (textures and buffers), and setting correspondence between shader variables and actual resources is called resource binding. Resource binding implementation varies considerably between different API. Diligent Engine introduces a new object called shader resource binding that encompasses all resources needed by all shaders in a certain pipeline state.
      API Basics
      Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. Graphics APIs usually have a native object that represents linear buffer. Diligent Engine uses IBuffer interface as an abstraction for a native buffer. To create a buffer, one needs to populate BufferDesc structure and call IRenderDevice::CreateBuffer() method as in the following example:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); While there is usually just one buffer object, different APIs use very different approaches to represent textures. For instance, in Direct3D11, there are ID3D11Texture1D, ID3D11Texture2D, and ID3D11Texture3D objects. In OpenGL, there is individual object for every texture dimension (1D, 2D, 3D, Cube), which may be a texture array, which may also be multisampled (i.e. GL_TEXTURE_2D_MULTISAMPLE_ARRAY). As a result there are nine different GL texture types that Diligent Engine may create under the hood. In Direct3D12, there is only one resource interface. Diligent Engine hides all these details in ITexture interface. There is only one  IRenderDevice::CreateTexture() method that is capable of creating all texture types. Dimension, format, array size and all other parameters are specified by the members of the TextureDesc structure:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); If native API supports multithreaded resource creation, textures and buffers can be created by multiple threads simultaneously.
      Interoperability with native API provides access to the native buffer/texture objects and also allows creating Diligent Engine objects from native handles. It allows applications seamlessly integrate native API-specific code with Diligent Engine.
      Next-generation APIs allow fine level-control over how resources are allocated. Diligent Engine does not currently expose this functionality, but it can be added by implementing IResourceAllocator interface that encapsulates specifics of resource allocation and providing this interface to CreateBuffer() or CreateTexture() methods. If null is provided, default allocator should be used.
      Initializing the Pipeline State
      As it was mentioned earlier, Diligent Engine follows next-gen APIs to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.). This approach maps directly to Direct3D12/Vulkan, but is also beneficial for older APIs as it eliminates pipeline misconfiguration errors. With many individual calls tweaking various GPU pipeline settings it is very easy to forget to set one of the states or assume the stage is already properly configured when in fact it is not. Using pipeline state object helps avoid these problems as all stages are configured at once.
      Creating Shaders
      While in earlier APIs shaders were bound separately, in the next-generation APIs as well as in Diligent Engine shaders are part of the pipeline state object. The biggest challenge when authoring shaders is that Direct3D and OpenGL/Vulkan use different shader languages (while Apple uses yet another language in their Metal API). Maintaining two versions of every shader is not an option for real applications and Diligent Engine implements shader source code converter that allows shaders authored in HLSL to be translated to GLSL. To create a shader, one needs to populate ShaderCreationAttribs structure. SourceLanguage member of this structure tells the system which language the shader is authored in:
      SHADER_SOURCE_LANGUAGE_DEFAULT - The shader source language matches the underlying graphics API: HLSL for Direct3D11/Direct3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. SHADER_SOURCE_LANGUAGE_GLSL - The shader source is in GLSL. There is currently no GLSL to HLSL converter, so this value should only be used for OpenGL and OpenGLES modes. There are two ways to provide the shader source code. The first way is to use Source member. The second way is to provide a file path in FilePath member. Since the engine is entirely decoupled from the platform and the host file system is platform-dependent, the structure exposes pShaderSourceStreamFactory member that is intended to provide the engine access to the file system. If FilePath is provided, shader source factory must also be provided. If the shader source contains any #include directives, the source stream factory will also be used to load these files. The engine provides default implementation for every supported platform that should be sufficient in most cases. Custom implementation can be provided when needed.
      When sampling a texture in a shader, the texture sampler was traditionally specified as separate object that was bound to the pipeline at run time or set as part of the texture object itself. However, in most cases it is known beforehand what kind of sampler will be used in the shader. Next-generation APIs expose new type of sampler called static sampler that can be initialized directly in the pipeline state. Diligent Engine exposes this functionality: when creating a shader, textures can be assigned static samplers. If static sampler is assigned, it will always be used instead of the one initialized in the texture shader resource view. To initialize static samplers, prepare an array of StaticSamplerDesc structures and initialize StaticSamplers and NumStaticSamplers members. Static samplers are more efficient and it is highly recommended to use them whenever possible. On older APIs, static samplers are emulated via generic sampler objects.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] = {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader );
      Creating the Pipeline State Object
      After all required shaders are created, the rest of the fields of the PipelineStateDesc structure provide depth-stencil, rasterizer, and blend state descriptions, the number and format of render targets, input layout format, etc. For instance, rasterizer state can be described as follows:
      PipelineStateDesc PSODesc; RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; RasterizerDesc.AntialiasedLineEnable = False; Depth-stencil and blend states are defined in a similar fashion.
      Another important thing that pipeline state object encompasses is the input layout description that defines how inputs to the vertex shader, which is the very first shader stage, should be read from the memory. Input layout may define several vertex streams that contain values of different formats and sizes:
      // Define input layout InputLayoutDesc &Layout = PSODesc.GraphicsPipeline.InputLayout; LayoutElement TextLayoutElems[] = {     LayoutElement( 0, 0, 3, VT_FLOAT32, False ),     LayoutElement( 1, 0, 4, VT_UINT8, True ),     LayoutElement( 2, 0, 2, VT_FLOAT32, False ), }; Layout.LayoutElements = TextLayoutElems; Layout.NumElements = _countof( TextLayoutElems ); Finally, pipeline state defines primitive topology type. When all required members are initialized, a pipeline state object can be created by IRenderDevice::CreatePipelineState() method:
      // Define shader and primitive topology PSODesc.GraphicsPipeline.PrimitiveTopologyType = PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; PSODesc.GraphicsPipeline.pVS = pVertexShader; PSODesc.GraphicsPipeline.pPS = pPixelShader; PSODesc.Name = "My pipeline state"; m_pDev->CreatePipelineState(PSODesc, &m_pPSO); When PSO object is bound to the pipeline, the engine invokes all API-specific commands to set all states specified by the object. In case of Direct3D12 this maps directly to setting the D3D12 PSO object. In case of Direct3D11, this involves setting individual state objects (such as rasterizer and blend states), shaders, input layout etc. In case of OpenGL, this requires a number of fine-grain state tweaking calls. Diligent Engine keeps track of currently bound states and only calls functions to update these states that have actually changed.
      Binding Shader Resources
      Direct3D11 and OpenGL utilize fine-grain resource binding models, where an application binds individual buffers and textures to certain shader or program resource binding slots. Direct3D12 uses a very different approach, where resource descriptors are grouped into tables, and an application can bind all resources in the table at once by setting the table in the command list. Resource binding model in Diligent Engine is designed to leverage this new method. It introduces a new object called shader resource binding that encapsulates all resource bindings required for all shaders in a certain pipeline state. It also introduces the classification of shader variables based on the frequency of expected change that helps the engine group them into tables under the hood:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. Shader variable type must be specified during shader creation by populating an array of ShaderVariableDesc structures and initializing ShaderCreationAttribs::Desc::VariableDesc and ShaderCreationAttribs::Desc::NumVariables members (see example of shader creation above).
      Static variables cannot be changed once a resource is bound to the variable. They are bound directly to the shader object. For instance, a shadow map texture is not expected to change after it is created, so it can be bound directly to the shader:
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new Shader Resource Binding object (SRB) that is created by the pipeline state (IPipelineState::CreateShaderResourceBinding()):
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Note that an SRB is only compatible with the pipeline state it was created from. SRB object inherits all static bindings from shaders in the pipeline, but is not allowed to change them.
      Mutable resources can only be set once for every instance of a shader resource binding. Such resources are intended to define specific material properties. For instance, a diffuse texture for a specific material is not expected to change once the material is defined and can be set right after the SRB object has been created:
      m_pSRB->GetVariable(SHADER_TYPE_PIXEL, "tex2DDiffuse")->Set(pDiffuseTexSRV); In some cases it is necessary to bind a new resource to a variable every time a draw command is invoked. Such variables should be labeled as dynamic, which will allow setting them multiple times through the same SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); Under the hood, the engine pre-allocates descriptor tables for static and mutable resources when an SRB objcet is created. Space for dynamic resources is dynamically allocated at run time. Static and mutable resources are thus more efficient and should be used whenever possible.
      As you can see, Diligent Engine does not expose low-level details of how resources are bound to shader variables. One reason for this is that these details are very different for various APIs. The other reason is that using low-level binding methods is extremely error-prone: it is very easy to forget to bind some resource, or bind incorrect resource such as bind a buffer to the variable that is in fact a texture, especially during shader development when everything changes fast. Diligent Engine instead relies on shader reflection system to automatically query the list of all shader variables. Grouping variables based on three types mentioned above allows the engine to create optimized layout and take heavy lifting of matching resources to API-specific resource location, register or descriptor in the table.
      This post gives more details about the resource binding model in Diligent Engine.
      Setting the Pipeline State and Committing Shader Resources
      Before any draw or compute command can be invoked, the pipeline state needs to be bound to the context:
      m_pContext->SetPipelineState(m_pPSO); Under the hood, the engine sets the internal PSO object in the command list or calls all the required native API functions to properly configure all pipeline stages.
      The next step is to bind all required shader resources to the GPU pipeline, which is accomplished by IDeviceContext::CommitShaderResources() method:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); The method takes a pointer to the shader resource binding object and makes all resources the object holds available for the shaders. In the case of D3D12, this only requires setting appropriate descriptor tables in the command list. For older APIs, this typically requires setting all resources individually.
      Next-generation APIs require the application to track the state of every resource and explicitly inform the system about all state transitions. For instance, if a texture was used as render target before, while the next draw command is going to use it as shader resource, a transition barrier needs to be executed. Diligent Engine does the heavy lifting of state tracking.  When CommitShaderResources() method is called with COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES flag, the engine commits and transitions resources to correct states at the same time. Note that transitioning resources does introduce some overhead. The engine tracks state of every resource and it will not issue the barrier if the state is already correct. But checking resource state is an overhead that can sometimes be avoided. The engine provides IDeviceContext::TransitionShaderResources() method that only transitions resources:
      m_pContext->TransitionShaderResources(m_pPSO, m_pSRB); In some scenarios it is more efficient to transition resources once and then only commit them.
      Invoking Draw Command
      The final step is to set states that are not part of the PSO, such as render targets, vertex and index buffers. Diligent Engine uses Direct3D11-syle API that is translated to other native API calls under the hood:
      ITextureView *pRTVs[] = {m_pRTV}; m_pContext->SetRenderTargets(_countof( pRTVs ), pRTVs, m_pDSV); // Clear render target and depth buffer const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); m_pContext->ClearDepthStencil(nullptr, CLEAR_DEPTH_FLAG, 1.f); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); Different native APIs use various set of function to execute draw commands depending on command details (if the command is indexed, instanced or both, what offsets in the source buffers are used etc.). For instance, there are 5 draw commands in Direct3D11 and more than 9 commands in OpenGL with something like glDrawElementsInstancedBaseVertexBaseInstance not uncommon. Diligent Engine hides all details with single IDeviceContext::Draw() method that takes takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); For compute commands, there is IDeviceContext::DispatchCompute() method that takes DispatchComputeAttribs structure that defines compute grid dimension.
      Source Code
      Full engine source code is available on GitHub and is free to use. The repository contains two samples, asteroids performance benchmark and example Unity project that uses Diligent Engine in native plugin.
      AntTweakBar sample is Diligent Engine’s “Hello World” example.

       
      Atmospheric scattering sample is a more advanced example. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to multiple render targets, using compute shaders and unordered access views, etc.

      Asteroids performance benchmark is based on this demo developed by Intel. It renders 50,000 unique textured asteroids and allows comparing performance of Direct3D11 and Direct3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures.

      Finally, there is an example project that shows how Diligent Engine can be integrated with Unity.

      Future Work
      The engine is under active development. It currently supports Windows desktop, Universal Windows and Android platforms. Direct3D11, Direct3D12, OpenGL/GLES backends are now feature complete. Vulkan backend is coming next, and support for more platforms is planned.
    • By michaeldodis
      I've started building a small library, that can render pie menu GUI in legacy opengl, planning to add some traditional elements of course.
      It's interface is similar to something you'd see in IMGUI. It's written in C.
      Early version of the library
      I'd really love to hear anyone's thoughts on this, any suggestions on what features you'd want to see in a library like this? 
      Thanks in advance!
  • Popular Now