C++ Is there a tool to write C++ code to a file

Recommended Posts

I am working on a tool to auto-generate some C/C++ code by parsing a file. Is there a tool that provides an interface to write C/C++ code like this

Struct* pStruct = generator->beginStruct("Material");
	pStruct->addVariable("Buffer*", "pBuffer");
	pStruct->addVariable("Texture*", "pTexture");

/* Output file
struct Material
	Buffer* pBuffer;
	Texture* pTexture;

Now I know its quite trivial to write a tool like this but I am curious to know whether a tool already exists. Seems just like a tool generating json/xml but for C++.

Note: I won't be doing any fancy stuff like templates or inheritance. Just pure C structs.

Thank you

Share this post

Link to post
Share on other sites

I would guess that you wouldnt find anything like that because it is redundant. XML and JSON are formated syntactical strict languages where inside a C file anything could be written that is formal correct in the first order. Thats why writing a XML or JSON parser is less time consuming than a C/C++ parser.

Maybe either you need to write it yourself or use something like an AST to get what you want. You could look at C#'s IL Code generator for an approach how they do it

Share this post

Link to post
Share on other sites

Code generators are typically used in the context of domain-specific languages, so anything you find would likely be tied to a specific language. It would probably be easier to write your own simple one from scratch rather than try and adapt another one to your needs.

Luckily there are some excellent references on DSLs out there.

Share this post

Link to post
Share on other sites

You can write an ad-hoc code generation tool with any text templating system.
I tend to use the string formatting features in Python: templates for different files and fragments can be placed in easy to write and freely indented multiline strings, placeholders support padding and numeric formatting if needed, input data can be produced in a dictionary and referenced by name, file handling is easy and convenient,  data structures and facilities to manage iteration, staged transformations, file fragments etc. (e.g. list and dictionary comprehensions) are very powerful and convenient.
You might be able to dispense with input files and place lists and dictionaries of source data in the code generation script. Another possible simplification is receiving a fixed set of output file names (e.g. a pair of .cpp and .h files) as command line parameters.



Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Forum Statistics

    • Total Topics
    • Total Posts
  • Similar Content

    • By Josheir
      void update() { if (thrust) { dx += cos(angle*DEGTORAD)*.02; dy += sin(angle*DEGTORAD)*.02; } else { dx*=0.99; dy*=0.99; } int maxSpeed = 15; float speed = sqrt(dx*dx+dy*dy); if (speed>maxSpeed) { dx *= maxSpeed/speed; dy *= maxSpeed/speed; } x+=dx; y+=dy; . . . } In the above code, why is maxSpeed being divided by the speed variable.  I'm stumped.
      Thank you,
    • By Benjamin Shefte
      Hey there,  I have this old code im trying to compile using GCC and am running into a few issues..
      im trying to figure out how to convert these functions to gcc
      static __int64 MyQueryPerformanceFrequency() { static __int64 aFreq = 0; if(aFreq!=0) return aFreq; LARGE_INTEGER s1, e1, f1; __int64 s2, e2, f2; QueryPerformanceCounter(&s1); s2 = MyQueryPerformanceCounter(); Sleep(50); e2 = MyQueryPerformanceCounter(); QueryPerformanceCounter(&e1); QueryPerformanceFrequency(&f1); double aTime = (double)(e1.QuadPart - s1.QuadPart)/f1.QuadPart; f2 = (e2 - s2)/aTime; aFreq = f2; return aFreq; } void PerfTimer::GlobalStart(const char *theName) { gPerfTimerStarted = true; gPerfTotalTime = 0; gPerfTimerStartCount = 0; gPerfElapsedTime = 0; LARGE_INTEGER anInt; QueryPerformanceCounter(&anInt); gPerfResetTick = anInt.QuadPart; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// void PerfTimer::GlobalStop(const char *theName) { LARGE_INTEGER anInt; QueryPerformanceCounter(&anInt); LARGE_INTEGER aFreq; QueryPerformanceFrequency(&aFreq); gPerfElapsedTime = (double)(anInt.QuadPart - gPerfResetTick)/aFreq.QuadPart*1000.0; gPerfTimerStarted = false; }  
      I also tried converting this function (original function is the first function below and my converted for gcc function is under that) is this correct?:
      #if defined(WIN32) static __int64 MyQueryPerformanceCounter() { // LARGE_INTEGER anInt; // QueryPerformanceCounter(&anInt); // return anInt.QuadPart; #if defined(WIN32) unsigned long x,y; _asm { rdtsc mov x, eax mov y, edx } __int64 result = y; result<<=32; result|=x; return result; } #else static __int64 MyQueryPerformanceCounter() { struct timeval t1, t2; double elapsedTime; // start timer gettimeofday(&t1, NULL); Sleep(50); // stop timer gettimeofday(&t2, NULL); // compute and print the elapsed time in millisec elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0; // sec to ms elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0; // us to ms return elapsedTime; } #endif Any help would be appreciated, Thank you!
    • By mister345
      Hi, I'm building a game engine using DirectX11 in c++.
      I need a basic physics engine to handle collisions and motion, and no time to write my own.
      What is the easiest solution for this? Bullet and PhysX both seem too complicated and would still require writing my own wrapper classes, it seems. 
      I found this thing called PAL - physics abstraction layer that can support bullet, physx, etc, but it's so old and no info on how to download or install it.
      The simpler the better. Please let me know, thanks!
    • By lawnjelly
      It comes that time again when I try and get my PC build working on Android via Android Studio. All was going swimmingly, it ran in the emulator fine, but on my first actual test device (Google Nexus 7 2012 tablet (32 bit ARM Cortex-A9, ARM v7A architecture)) I was getting a 'SIGBUS illegal alignment' crash.
      My little research has indicated that while x86 is fine with loading 16 / 32 / 64 bit values from any byte address in memory, the earlier ARM chips may need data to be aligned to the data size. This isn't a massive problem, and I see the reason for it (probably faster, like SIMD aligned loads, and simpler for the CPU). I probably have quite a few of these, particular in my own byte packed file formats. I can adjust the exporter / formats so that they are using the required alignment.
      Just to confirm, if anyone knows this, is it all 16 / 32 / 64 bit accesses that need to be data size aligned on early android devices? Or e.g. just 64 bit size access? 
      And is there any easy way to get the compiler to spit out some kind of useful information as to the alignment of each member of a struct / class, so I can quickly pin down the culprits?
      The ARM docs (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html) suggest another alternative is using a __packed qualifier. Anyone used this, is this practical?
    • By Josheir
      In the following code:

      Point p = a[1]; center of rotation for (int i = 0; I<4; i++) { int x = a[i].x - p.x; int y = a[i].y - p.y; a[i].x = y + p.x; a[i].y = - x + p.y; }  
      I am understanding that a 90 degree shift results in a change like:   
      xNew = -y
      yNew = x
      Could someone please explain how the two additions and subtractions of the p.x and p.y works?
      Thank you,
  • Popular Now