• Advertisement

DX11 read write buffer use in PixelShader and VertexShader: how to synchronize access

Recommended Posts

Hello,

until now i am using structured buffers in my vertexShader to calculate the morph offsets of my animated characters. And it works fine.

But until now i only read from this kind of buffers. ( i use 4 of them )

Now i had in mind to do other things, where i have to use a readwrite buffer that i can write to.

But i cant get in my head how to sync write acceses.

when i read  a value from the buffer at a adress that coresponds to e.g. a pixel coordinate and want to add a value  another thread could have read the same value overrides the value that i had written.

How is this done typically ?

 

 

 

 

Share this post


Link to post
Share on other sites
Advertisement

I dont know the "official" way of doing it (as I am just a hobbyist), however I do it in several different ways depending on the situation:

1. From the pixel shader if you are writing to another texture you can use the standard depth stencil mechanics to ensure the closest "wins".

 

2. When writing to a RWStructuredBuffer from a compute shader, I make different threads write to different elements in the buffer. The easy way is to use the threadnumber as the element number. A slightly more complex way is to have a thread "grab" an element number by interlocked incrementing a counter and having that thread use the previous value of the counter.

 

3. From the pixel shader I send back to the cpu the object number of the object i clicked on.

Basically I need the closest texel at a certain screen position (eg where i clicked the mouse) write information to element one of a RWStructuredBuffer. After checking the pixel is at the correct position,  I construct a uint value where the high 16 bits are the depth ( ((uint)(input.Pos.z * 65535.0)) << 16 ) and the low 16 bits are my information eg my object number.

Then use the InterlockedMin function to send the uint value to the buffer. This causes the texel with the lowest depth to "win" which means it comes from the object which was closest to the camera at that point on the screen.

 

So in summary - you either write to different elements or use the interlocked functions to give you better control.

Edited by CortexDragon

Share this post


Link to post
Share on other sites
11 hours ago, evelyn4you said:

when i read  a value from the buffer at a adress that coresponds to e.g. a pixel coordinate and want to add a value  another thread could have read the same value overrides the value that i had written.

What you're describing is called a "race condition", where two threads race to write to the same memory. The normal approach to dealing with this is to avoid needing to do it at all or to use atomic functions (in D3D those would be Interlocked functions).

So if you just want to add values, just call InterlockedAdd(buffer, value, oldValue).

Edited by Styves

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By AxeGuywithanAxe
      I wanted to see how others are currently handling descriptor heap updates and management.
      I've read a few articles and there tends to be three major strategies :
      1 ) You split up descriptor heaps per shader stage ( i.e one for vertex shader , pixel , hull, etc)
      2) You have one descriptor heap for an entire pipeline
      3) You split up descriptor heaps for update each update frequency (i.e EResourceSet_PerInstance , EResourceSet_PerPass , EResourceSet_PerMaterial, etc)
      The benefits of the first two approaches is that it makes it easier to port current code, and descriptor / resource descriptor management and updating tends to be easier to manage, but it seems to be not as efficient.
      The benefits of the third approach seems to be that it's the most efficient because you only manage and update objects when they change.
    • By evelyn4you
      hi,
      until now i use typical vertexshader approach for skinning with a Constantbuffer containing the transform matrix for the bones and an the vertexbuffer containing bone index and bone weight.
      Now i have implemented realtime environment  probe cubemaping so i have to render my scene from many point of views and the time for skinning takes too long because it is recalculated for every side of the cubemap.
      For Info i am working on Win7 an therefore use one Shadermodel 5.0 not 5.x that have more options, or is there a way to use 5.x in Win 7
      My Graphic Card is Directx 12 compatible NVidia GTX 960
      the member turanszkij has posted a good for me understandable compute shader. ( for Info: in his engine he uses an optimized version of it )
      https://turanszkij.wordpress.com/2017/09/09/skinning-in-compute-shader/
      Now my questions
       is it possible to feed the compute shader with my orignial vertexbuffer or do i have to copy it in several ByteAdressBuffers as implemented in the following code ?
        the same question is about the constant buffer of the matrixes
       my more urgent question is how do i feed my normal pipeline with the result of the compute Shader which are 2 RWByteAddressBuffers that contain position an normal
      for example i could use 2 vertexbuffer bindings
      1 containing only the uv coordinates
      2.containing position and normal
      How do i copy from the RWByteAddressBuffers to the vertexbuffer ?
       
      (Code from turanszkij )
      Here is my shader implementation for skinning a mesh in a compute shader:
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 struct Bone { float4x4 pose; }; StructuredBuffer<Bone> boneBuffer;   ByteAddressBuffer vertexBuffer_POS; // T-Pose pos ByteAddressBuffer vertexBuffer_NOR; // T-Pose normal ByteAddressBuffer vertexBuffer_WEI; // bone weights ByteAddressBuffer vertexBuffer_BON; // bone indices   RWByteAddressBuffer streamoutBuffer_POS; // skinned pos RWByteAddressBuffer streamoutBuffer_NOR; // skinned normal RWByteAddressBuffer streamoutBuffer_PRE; // previous frame skinned pos   inline void Skinning(inout float4 pos, inout float4 nor, in float4 inBon, in float4 inWei) {  float4 p = 0, pp = 0;  float3 n = 0;  float4x4 m;  float3x3 m3;  float weisum = 0;   // force loop to reduce register pressure  // though this way we can not interleave TEX - ALU operations  [loop]  for (uint i = 0; ((i &lt; 4) &amp;&amp; (weisum&lt;1.0f)); ++i)  {  m = boneBuffer[(uint)inBon].pose;  m3 = (float3x3)m;   p += mul(float4(pos.xyz, 1), m)*inWei;  n += mul(nor.xyz, m3)*inWei;   weisum += inWei;  }   bool w = any(inWei);  pos.xyz = w ? p.xyz : pos.xyz;  nor.xyz = w ? n : nor.xyz; }   [numthreads(1024, 1, 1)] void main( uint3 DTid : SV_DispatchThreadID ) {  const uint fetchAddress = DTid.x * 16; // stride is 16 bytes for each vertex buffer now...   uint4 pos_u = vertexBuffer_POS.Load4(fetchAddress);  uint4 nor_u = vertexBuffer_NOR.Load4(fetchAddress);  uint4 wei_u = vertexBuffer_WEI.Load4(fetchAddress);  uint4 bon_u = vertexBuffer_BON.Load4(fetchAddress);   float4 pos = asfloat(pos_u);  float4 nor = asfloat(nor_u);  float4 wei = asfloat(wei_u);  float4 bon = asfloat(bon_u);   Skinning(pos, nor, bon, wei);   pos_u = asuint(pos);  nor_u = asuint(nor);   // copy prev frame current pos to current frame prev pos streamoutBuffer_PRE.Store4(fetchAddress, streamoutBuffer_POS.Load4(fetchAddress)); // write out skinned props:  streamoutBuffer_POS.Store4(fetchAddress, pos_u);  streamoutBuffer_NOR.Store4(fetchAddress, nor_u); }  
    • By mister345
      Hi, can someone please explain why this is giving an assertion EyePosition!=0 exception?
       
      _lightBufferVS->viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&_lightBufferVS->position), XMLoadFloat3(&_lookAt), XMLoadFloat3(&up));
      It looks like DirectX doesnt want the 2nd parameter to be a zero vector in the assertion, but I passed in a zero vector with this exact same code in another program and it ran just fine. (Here is the version of the code that worked - note XMLoadFloat3(&m_lookAt) parameter value is (0,0,0) at runtime - I debugged it - but it throws no exceptions.
          m_viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&m_position), XMLoadFloat3(&m_lookAt), XMLoadFloat3(&up)); Here is the repo for the broken code (See LightClass) https://github.com/mister51213/DirectX11Engine/blob/master/DirectX11Engine/LightClass.cpp
      and here is the repo with the alternative version of the code that is working with a value of (0,0,0) for the second parameter.
      https://github.com/mister51213/DX11Port_SoftShadows/blob/master/Engine/lightclass.cpp
    • By mister345
      Hi, can somebody please tell me in clear simple steps how to debug and step through an hlsl shader file?
      I already did Debug > Start Graphics Debugging > then captured some frames from Visual Studio and
      double clicked on the frame to open it, but no idea where to go from there.
       
      I've been searching for hours and there's no information on this, not even on the Microsoft Website!
      They say "open the  Graphics Pixel History window" but there is no such window!
      Then they say, in the "Pipeline Stages choose Start Debugging"  but the Start Debugging option is nowhere to be found in the whole interface.
      Also, how do I even open the hlsl file that I want to set a break point in from inside the Graphics Debugger?
       
      All I want to do is set a break point in a specific hlsl file, step thru it, and see the data, but this is so unbelievably complicated
      and Microsoft's instructions are horrible! Somebody please, please help.
       
       
       

    • By mister345
      I finally ported Rastertek's tutorial # 42 on soft shadows and blur shading. This tutorial has a ton of really useful effects and there's no working version anywhere online.
      Unfortunately it just draws a black screen. Not sure what's causing it. I'm guessing the camera or ortho matrix transforms are wrong, light directions, or maybe texture resources not being properly initialized.  I didnt change any of the variables though, only upgraded all types and functions DirectX3DVector3 to XMFLOAT3, and used DirectXTK for texture loading. If anyone is willing to take a look at what might be causing the black screen, maybe something pops out to you, let me know, thanks.
      https://github.com/mister51213/DX11Port_SoftShadows
       
      Also, for reference, here's tutorial #40 which has normal shadows but no blur, which I also ported, and it works perfectly.
      https://github.com/mister51213/DX11Port_ShadowMapping
       
  • Advertisement