• Advertisement

DX12 PSO Management in practice

Recommended Posts

I am doing a DX12 API abstraction layer for my engine. In the first step I just want a naïve straight forward implementation which wraps a DX11-like interface. The biggest roadblock right now is implementing the pipeline state objects from DX11-like sub-pipeline states like RasterizerState, BlendState, etc. I guess that in this case a call to MyDevice::SetRasterizerState(RasterizerState* myState) would not trigger an API call internally like the DX11 implementation, but instead it could make the currently bound pipeline state "dirty". If the pipeline state is dirty on the next draw call, then I could either retrieve a PSO if it already exists, or create one. The missing link for me is what data structure could I use here to track PSOs? What is a common/practical approach? Unfortunately I couldn't find a concreate example for this yet.

 

Share this post


Link to post
Share on other sites
Advertisement

Not sure if this is something within your reach, but if possible I would suggest going the other way, ie. have your API expose a DX12-style PSO and emulate that on DX11. You can easily hash the DX11 rasterizer state, depth stencil state and blend state and only set them if they actually change. In my engine I always set the shaders and input layout on DX11 when switching PSO and it hasn't bitten me performance-wise yet at least. I would assume you could hash those too if you want, and only set them if they change. On DX12, setting the PSO is straightforward and Vulkan is pretty much the same if you want to go that route at some point.

Edited by GuyWithBeard

Share this post


Link to post
Share on other sites
1 hour ago, GuyWithBeard said:

Not sure if this is something within your reach, but if possible I would suggest going the other way, ie. have your API expose a DX12-style PSO and emulate that on DX11. You can easily hash the DX11 blend state, rasterizer state, depth stencil state and blend state and only set them if they actually change. In my engine I always set the shaders and input layout on DX11 when switching PSO and it hasn't bitten me performance-wise yet at least. I would assume you could hash those too if you want, and only set them if they change. On DX12, setting the PSO is straightforward and Vulkan is pretty much the same if you want to go that route at some point.

This is kind of what I do too, although I still have separate blend/raster/depth state objects, you have to build a PSO out of them to use them in a draw command. In D3D11 they actually hold the native state objects, and the PSO basically just holds a reference to them, this would turn around in the planned D3D12 implementation, where the separate state objects would only contain the descriptors, and the PSO would have the native stuff. It's kind of a mix of both worlds.

Share this post


Link to post
Share on other sites

If you have to look up PSOs per draw, it's certainly going to be sub-optimal (perhaps even slower than D11). If you can do this when you create a draw command though, and then reuse that command every frame, you'll be in a good position. 

I simply hash the PSO descriptor, and store the PSOs in a hash map. When hashing an arbitrary structure though, you've got to be wary of padding - hash just the members individually, or init the structure with memset so you know the padding bytes contain 0's.

I actually use a fancy thread safe hash table because multiple threads can be looking up / creating PSOs at the same time. 

Share this post


Link to post
Share on other sites

I've been there myself. I'm creating a library which is an abstraction layer for graphics APIs. So when I started the project I sat D3D11, D3D12 and Vulkan on a chair (each API in their own chair that is ;)) in the same table and asked them: "What are your common factors?"

The first answer was much like what you are trying to do now: A D3D11 like pipeline state manager. I actually did it, BUT, it was very inefficient. There were so many PSOs to be internally created, state changes that had to be track and the lookup was adding to latency. I worked with this model for some time but as the project grown I had to recall the APIs again and ask the same question again.

For the new answer I had to do as others suggested: I had to redesign my PSO common factor and went for a D3D12 like PSO manager. Literally I had to create an "IPipelineStateObject" interface. This new interface is natural for D3D12 and Vulkan to implement and is very easy for D3D11 to "emulate". This resulted in a much more native and efficient implementation.

Not only for PSO, but in general, if you try to get a common factor between all available APIs then you'll notice that the model leans towards a Vulkan like design.

Share this post


Link to post
Share on other sites

Thanks guys. At first I started out with keeping DX11-like sub-pso bindings and trying to hash the whole PSO description with them to create a look up table, but as many of you suggested I will be rewriting the renderer to accommodate PSO creation instead in the application code. The plan is to make it the engine's responsibility to assemble PSOs. The good thing is that it has more high level knowledge of shader types and rendering paths and I hope to create every PSO up front in load time. 

Unfortunately this will trigger rewriting major parts of the rendering engine code apart from the API abstraction layer, but it seems like a better way long term because of the new graphics API designs.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Advertisement
  • Advertisement
  • Popular Tags

  • Advertisement
  • Popular Now

  • Similar Content

    • By evanofsky
      The more you know about a given topic, the more you realize that no one knows anything.
      For some reason (why God, why?) my topic of choice is game development. Everyone in that field agrees: don't add networked multiplayer to an existing game, you drunken clown.
      Well, I did it anyway because I hate myself. Somehow it turned out great. None of us know anything.
      Problem #1: assets
      My first question was: how do I tell a client to use such-and-such mesh to render an object? Serialize the whole mesh? Nah, they already have it on disk. Send its filename? Nah, that's inefficient and insecure. Okay, just a string identifier then?
      Fortunately, before I had time to implement any of my own terrible ideas, I watched a talk from Mike Acton where he mentions the danger of "lazy decision-making". One of his points was: strings let you lazily ignore decisions until runtime, when it's too late to fix.
      If I rename a texture, I don't want to get a bug report from a player with a screenshot like this:

      I had never thought about how powerful and complex strings are. Half the field of computer science deals with strings and what they can do. They usually require a heap allocation, or something even more complex like ropes and interning. I usually don't bother to limit their length, so a single string expands the possibility space to infinity, destroying whatever limited ability I had to predict runtime behavior.
      And here I am using these complex beasts to identify objects. Heck, I've even used strings to access object properties. What madness!
      Long story short, I cultivated a firm conviction to avoid strings where possible. I wrote a pre-processor that outputs header files like this at build time:
      namespace Asset { namespace Mesh { const int count = 3; const AssetID player = 0; const AssetID enemy = 1; const AssetID projectile = 2; } } So I can reference meshes like this:
      renderer->mesh = Asset::Mesh::player; If I rename a mesh, the compiler makes it my problem instead of some poor player's problem. That's good!
      The bad news is, I still have to interact with the file system, which requires the use of strings. The good news is the pre-processor can save the day.
      const char* Asset::Mesh::filenames[] = { "assets/player.msh", "assets/enemy.msh", "assets/projectile.msh", 0, }; With all this in place, I can easily send assets across the network. They're just numbers! I can even verify them.
      if (mesh < 0 || mesh >= Asset::Mesh::count) net_error(); // just what are you trying to pull, buddy? Problem #2: object references
      My next question was: how do I tell a client to please move/delete/frobnicate "that one object from before, you know the one". Once again, I was lucky enough to hear from smart people before I could shoot myself in the foot.
      From the start, I knew I needed a bunch of lists of different kinds of objects, like this:
      Array<Turret> Turret::list; Array<Projectile> Projectile::list; Array<Avatar> Avatar::list; Let's say I want to reference the first object in the Avatar list, even without networking, just on our local machine. My first idea is to just use a pointer:
       
      Avatar* avatar; avatar = &Avatar::list[0]; This introduces a ton of non-obvious problems. First, I'm compiling for a 64 bit architecture, which means that pointer takes up 8 whole bytes of memory, even though most of it is probably zeroes. And memory is the number one performance bottleneck in games.
      Second, if I add enough objects to the array, it will get reallocated to a different place in memory, and the pointer will point to garbage.
      Okay, fine. I'll use an ID instead.
      template<typename Type> struct Ref { short id; inline Type* ref() { return &Type::list[id]; } // overloaded "=" operator omitted }; Ref<Avatar> avatar = &Avatar::list[0]; avatar.ref()->frobnicate(); Second problem: if I remove that Avatar from the list, some other Avatar will get moved into its place without me knowing. The program will continue, blissfully and silently screwing things up, until some player sends a bug report that the game is "acting weird". I much prefer the program to explode instantly so I at least get a crash dump with a line number.
      Okay, fine. Instead of actually removing the avatar, I'll put a revision number on it:
      struct Avatar { short revision; }; template<typename Type> struct Ref { short id; short revision; inline Type* ref() { Type* t = &Type::list[id]; return t->revision == revision ? t : nullptr; } }; Instead of actually deleting the avatar, I'll mark it dead and increment the revision number. Now anything trying to access it will give a null pointer exception. And serializing a reference across the network is just a matter of sending two easily verifiable numbers.
      Problem #3: delta compression
      If I had to cut this article down to one line, it would just be a link to Glenn Fiedler's blog.
      Which by the way is here: gafferongames.com
      As I set out to implement my own version of Glenn's netcode, I read this article, which details one of the biggest challenges of multiplayer games. Namely, if you just blast the entire world state across the network 60 times a second, you could gobble up 17 mbps of bandwidth. Per client.
      Delta compression is one of the best ways to cut down bandwidth usage. If a client already knows where an object is, and it hasn't moved, then I don't need to send its position again.
      This can be tricky to get right.

      The first part is the trickiest: does the client really know where the object is? Just because I sent the position doesn't mean the client actually received it. The client might send an acknowledgement back that says "hey I received packet #218, but that was 0.5 seconds ago and I haven't gotten anything since."
      So to send a new packet to that client, I have to remember what the world looked like when I sent out packet #218, and delta compress the new packet against that. Another client might have received everything up to packet #224, so I can delta compress the new packet differently for them. Point is, we need to store a whole bunch of separate copies of the entire world.
      Someone on Reddit asked "isn't that a huge memory hog"?
      No, it is not.
      Actually I store 255 world copies in memory. All in a single giant array. Not only that, but each copy has enough room for the maximum number of objects (2048) even if only 2 objects are active.
      If you store an object's state as a position and orientation, that's 7 floats. 3 for XYZ coordinates and 4 for a quaternion. Each float takes 4 bytes. My game supports up to 2048 objects. 7 floats * 4 bytes * 2048 objects * 255 copies = ...
      14 MB. That's like, half of one texture these days.
      I can see myself writing this system five years ago in C#. I would start off immediately worried about memory usage, just like that Redditor, without stopping to think about the actual data involved. I would write some unnecessary, crazy fancy, bug-ridden compression system.
      Taking a second to stop and think about actual data like this is called Data-Oriented Design. When I talk to people about DOD, many immediately say, "Woah, that's really low-level. I guess you want to wring out every last bit of performance. I don't have time for that. Anyway, my code runs fine." Let's break down the assumptions in this statement.
      Assumption 1: "That's really low-level".
      Look, I multiplied four numbers together. It's not rocket science.
      Assumption 2: "You sacrifice readability and simplicity for performance."
      Let's picture two different solutions to this netcode problem. For clarity, let's pretend we only need 3 world copies, each containing up to 2 objects.
      Here's the solution I just described. Everything is statically allocated in the .bss segment. It never moves around. Everything is the same size. No pointers at all.

      Here's the idiomatic C# solution. Everything is scattered randomly throughout the heap. Things can get reallocated or moved right in the middle of a frame. The array is jagged. 64-bit pointers all over the place.

      Which is simpler?
      The second diagram is actually far from exhaustive. C#-land is a lot more complex in reality. Check the comments and you'll probably find someone correcting me about how C# actually works.
      But that's my point. With my solution, I can easily construct a "good enough" mental model to understand what's actually happening on the machine. I've barely scratched the surface with the C# solution. I have no idea how it will behave at runtime.
      Assumption 3: "Performance is the only reason you would code like this."
      To me, performance is a nice side benefit of data-oriented design. The main benefit is clarity of thought. Five years ago, when I sat down to solve a problem, my first thought was not about the problem itself, but how to shoehorn it into classes and interfaces.
      I witnessed this analysis paralysis first-hand at a game jam recently. My friend got stuck designing a grid for a 2048-like game. He couldn't figure out if each number was an object, or if each grid cell was an object, or both. I said, "the grid is an array of numbers. Each operation is a function that mutates the grid." Suddenly everything became crystal clear to him.
      Assumption 4: "My code runs fine".
      Again, performance is not the main concern, but it's important. The whole world switched from Firefox to Chrome because of it.
      Try this experiment: open up calc.exe. Now copy a 100 MB file from one folder to another.

      I don't know what calc.exe is doing during that 300ms eternity, but you can draw your own conclusions from my two minutes of research: calc.exe actually launches a process called Calculator.exe, and one of the command line arguments is called "-ServerName".
      Does calc.exe "run fine"? Did throwing a server in simplify things at all, or is it just slower and more complex?
      I don't want to get side-tracked. The point is, I want to think about the actual problem and the data involved, not about classes and interfaces. Most of the arguments against this mindset amount to "it's different than what I know".
      Problem #4: lag
      I now hand-wave us through to the part of the story where the netcode is somewhat operational.
      Right off the bat I ran into problems dealing with network lag. Games need to respond to players immediately, even if it takes 150ms to get a packet from the server. Projectiles were particularly useless under laggy network conditions. They were impossible to aim.
      I decided to re-use those 14 MB of world copies. When the server receives a command to fire a projectile, it steps the world back 150ms to the way the world appeared to the player when they hit the fire button. Then it simulates the projectile and steps the world forward until it's up to date with the present. That's where it creates the projectile.
      I ended up having the client create a fake projectile immediately, then as soon as it hears back from the server that the projectile was created, it deletes the fake and replaces it with the real thing. If all goes well, they should be in the same place due to the server's timey-wimey magic.
      Here it is in action. The fake projectile appears immediately but goes right through the wall. The server receives the message and fast-forwards the projectile straight to the part where it hits the wall. 150ms later the client gets the packet and sees the impact particle effect.

      The problem with netcode is, each mechanic requires a different approach to lag compensation. For example, my game has an "active armor" ability. If players react quick enough, they can reflect damage back at enemies.

      This breaks down in high lag scenarios. By the time the player sees the projectile hitting their character, the server has already registered the hit 100ms ago. The packet just hasn't made it to the client yet. This means you have to anticipate incoming damage and react long before it hits. Notice in the gif above how early I had to hit the button.
      To correct this, the server implements something I call "damage buffering". Instead of applying damage instantly, the server puts the damage into a buffer for 100ms, or whatever the round-trip time is to the client. At the end of that time, it either applies the damage, or if the player reacted, reflects it back.
      Here it is in action. You can see the 200ms delay between the projectile hitting me and the damage actually being applied.

      Here's another example. In my game, players can launch themselves at enemies. Enemies die instantly to perfect shots, but they deflect glancing blows and send you flying like this:

      Which direction should the player bounce? The client has to simulate the bounce before the server knows about it. The server and client need to agree which direction to bounce or they'll get out of sync, and they have no time to communicate beforehand.
      At first I tried quantizing the collision vector so that there were only six possible directions. This made it more likely that the client and server would choose the same direction, but it didn't guarantee anything.
      Finally I implemented another buffer system. Both client and server, when they detect a hit, enter a "buffer" state where the player sits and waits for the remote host to confirm the hit. To minimize jankiness, the server always defers to the client as to which direction to bounce. If the client never acknowledges the hit, the server acts like nothing happened and continues the player on their original course, fast-forwarding them to make up for the time they sat still waiting for confirmation.
      Problem #5: jitter
      My server sends out packets 60 times per second. What about players whose computers run faster than that? They'll see jittery animation.
      Interpolation is the industry-standard solution. Instead of immediately applying position data received from the server, you buffer it a little bit, then you blend smoothly between whatever data that you have.
      In my previous attempt at networked multiplayer, I tried to have each object keep track of its position data and smooth itself out. I ended up getting confused and it never worked well.
      This time, since I could already easily store the entire world state in a struct, I was able to write just two functions to make it work. One function takes two world states and blends them together. Another function takes a world state and applies it to the game.
      How big should the buffer delay be? I originally used a constant until I watched a video from the Overwatch devs where they mention adaptive interpolation delay. The buffer delay should smooth out not only the framerate from the server, but also any variance in packet delivery time.
      This was an easy win. Clients start out with a short interpolation delay, and any time they're missing a packet to interpolate toward, they increase their "lag score". Once it crosses a certain threshold, they tell the server to switch them to a higher interpolation delay.
      Of course, automated systems like this often act against the user's wishes, so it's important to add switches and knobs to the algorithm!

      Problem #6: joining servers mid-match
      Wait, I already have a way to serialize the entire game state. What's the hold up?
      Turns out, it takes more than one packet to serialize a fresh game state from scratch. And each packet may take multiple attempts to make it to the client. It may take a few hundred milliseconds to get the full state, and as we've seen already, that's an eternity. If the game is already in progress, that's enough time to send 20 packets' worth of new messages, which the client is not ready to process because it hasn't loaded yet.
      The solution is—you guessed it—another buffer.
      I changed the messaging system to support two separate streams of messages in the same packet. The first stream contains the map data, which is processed as soon as it comes in.
      The second stream is just the usual fire-hose of game messages that come in while the client is loading. The client buffers these messages until it's done loading, then processes them all until it's caught up.
      Problem #7: cross-cutting concerns
      This next part may be the most controversial.
      Remember that bit of gamedev wisdom from the beginning? "don't add networked multiplayer to an existing game"?
      Well, most of the netcode in this game is literally tacked on. It lives in its own 5000-line source file. It reaches into the game, pokes stuff into memory, and the game renders it.
      Just listen a second before stoning me. Is it better to group all network code in one place, or spread it out inside each game object?
      I think both approaches have advantages and disadvantages. In fact, I use both approaches in different parts of the game, for various reasons human and technical.
      But some design paradigms (*cough* OOP) leave no room for you to make this decision. Of course you put the netcode inside the object! Its data is private, so you'll have to write an interface to access it anyway. Might as well put all the smarts in there too.
      Conclusion
      I'm not saying you should write netcode like I do; only that this approach has worked for me so far. Read the code and judge for yourself.
      There is an objectively optimal approach for each use case, although people may disagree on which one it is. You should be free to choose based on actual constraints rather than arbitrary ones set forth by some paradigm.
      Thanks for reading. DECEIVER is launching on Kickstarter soon. Sign up to play the demo here!
    • By Bokchee 88
      I am animator by hand, and i am doing game animation for at least 8 years so far. During the last 2 years, i came with a idea for game and maybe some day, i want to start indie game company. As i am thinking to start game company, i am also thinking what kind of value i can give to the company. For example, am experience in animation,sales(I was selling web development services, before i jumped to gaming), bit of rigging- just not for production, i am learning on the side as well. The rest of the gaming production, like modeling, concept art, texturing, i am total noob or to say better, i am no near interest to do modeling for example, don't have such a patience to do it. But before characters and things are made for animating, what the hell i am would do?
      Also, what is the ideal size of the founding team of a game company? Positions to be filled mostly are, Concept artist, Modeler/Texture artist, programmer, animator-rigger. And later would need more people to join, like more animators, programmers, sound, fx,etc.
       
      And lastly, do i need to have something,like a prototype, to show people and get them interest, or should i ask someone i know, for skill that i lack, for example, Modeling would be great, texturing and rigging, and to start all together from scratch?  
    • By mark_braga
      I am working on a rendering framework. We have adopted the DX12 style where you create all pipelines for all permutations at load time. I am just wondering whether there is a limit to the number of pipelines you can create or if you have to pay some hidden cost if you have pipelines just lying around until you have to actually use it (For example: Choose MSAAX2 pipeline after the user picks it from the settings menu)
      Or should I only create the pipelines I need at load time and then re-create them whenever necessary?
    • By DiligentDev
      This article uses material originally posted on Diligent Graphics web site.
      Introduction
      Graphics APIs have come a long way from small set of basic commands allowing limited control of configurable stages of early 3D accelerators to very low-level programming interfaces exposing almost every aspect of the underlying graphics hardware. Next-generation APIs, Direct3D12 by Microsoft and Vulkan by Khronos are relatively new and have only started getting widespread adoption and support from hardware vendors, while Direct3D11 and OpenGL are still considered industry standard. New APIs can provide substantial performance and functional improvements, but may not be supported by older hardware. An application targeting wide range of platforms needs to support Direct3D11 and OpenGL. New APIs will not give any advantage when used with old paradigms. It is totally possible to add Direct3D12 support to an existing renderer by implementing Direct3D11 interface through Direct3D12, but this will give zero benefits. Instead, new approaches and rendering architectures that leverage flexibility provided by the next-generation APIs are expected to be developed.
      There are at least four APIs (Direct3D11, Direct3D12, OpenGL/GLES, Vulkan, plus Apple's Metal for iOS and osX platforms) that a cross-platform 3D application may need to support. Writing separate code paths for all APIs is clearly not an option for any real-world application and the need for a cross-platform graphics abstraction layer is evident. The following is the list of requirements that I believe such layer needs to satisfy:
      Lightweight abstractions: the API should be as close to the underlying native APIs as possible to allow an application leverage all available low-level functionality. In many cases this requirement is difficult to achieve because specific features exposed by different APIs may vary considerably. Low performance overhead: the abstraction layer needs to be efficient from performance point of view. If it introduces considerable amount of overhead, there is no point in using it. Convenience: the API needs to be convenient to use. It needs to assist developers in achieving their goals not limiting their control of the graphics hardware. Multithreading: ability to efficiently parallelize work is in the core of Direct3D12 and Vulkan and one of the main selling points of the new APIs. Support for multithreading in a cross-platform layer is a must. Extensibility: no matter how well the API is designed, it still introduces some level of abstraction. In some cases the most efficient way to implement certain functionality is to directly use native API. The abstraction layer needs to provide seamless interoperability with the underlying native APIs to provide a way for the app to add features that may be missing. Diligent Engine is designed to solve these problems. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common C++ front-end for all supported platforms and provides interoperability with underlying native APIs. It also supports integration with Unity and is designed to be used as graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. Full source code is available for download at GitHub and is free to use.
      Overview
      Diligent Engine API takes some features from Direct3D11 and Direct3D12 as well as introduces new concepts to hide certain platform-specific details and make the system easy to use. It contains the following main components:
      Render device (IRenderDevice  interface) is responsible for creating all other objects (textures, buffers, shaders, pipeline states, etc.).
      Device context (IDeviceContext interface) is the main interface for recording rendering commands. Similar to Direct3D11, there are immediate context and deferred contexts (which in Direct3D11 implementation map directly to the corresponding context types). Immediate context combines command queue and command list recording functionality. It records commands and submits the command list for execution when it contains sufficient number of commands. Deferred contexts are designed to only record command lists that can be submitted for execution through the immediate context.
      An alternative way to design the API would be to expose command queue and command lists directly. This approach however does not map well to Direct3D11 and OpenGL. Besides, some functionality (such as dynamic descriptor allocation) can be much more efficiently implemented when it is known that a command list is recorded by a certain deferred context from some thread.
      The approach taken in the engine does not limit scalability as the application is expected to create one deferred context per thread, and internally every deferred context records a command list in lock-free fashion. At the same time this approach maps well to older APIs.
      In current implementation, only one immediate context that uses default graphics command queue is created. To support multiple GPUs or multiple command queue types (compute, copy, etc.), it is natural to have one immediate contexts per queue. Cross-context synchronization utilities will be necessary.
      Swap Chain (ISwapChain interface). Swap chain interface represents a chain of back buffers and is responsible for showing the final rendered image on the screen.
      Render device, device contexts and swap chain are created during the engine initialization.
      Resources (ITexture and IBuffer interfaces). There are two types of resources - textures and buffers. There are many different texture types (2D textures, 3D textures, texture array, cubmepas, etc.) that can all be represented by ITexture interface.
      Resources Views (ITextureView and IBufferView interfaces). While textures and buffers are mere data containers, texture views and buffer views describe how the data should be interpreted. For instance, a 2D texture can be used as a render target for rendering commands or as a shader resource.
      Pipeline State (IPipelineState interface). GPU pipeline contains many configurable stages (depth-stencil, rasterizer and blend states, different shader stage, etc.). Direct3D11 uses coarse-grain objects to set all stage parameters at once (for instance, a rasterizer object encompasses all rasterizer attributes), while OpenGL contains myriad functions to fine-grain control every individual attribute of every stage. Both methods do not map very well to modern graphics hardware that combines all states into one monolithic state under the hood. Direct3D12 directly exposes pipeline state object in the API, and Diligent Engine uses the same approach.
      Shader Resource Binding (IShaderResourceBinding interface). Shaders are programs that run on the GPU. Shaders may access various resources (textures and buffers), and setting correspondence between shader variables and actual resources is called resource binding. Resource binding implementation varies considerably between different API. Diligent Engine introduces a new object called shader resource binding that encompasses all resources needed by all shaders in a certain pipeline state.
      API Basics
      Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. Graphics APIs usually have a native object that represents linear buffer. Diligent Engine uses IBuffer interface as an abstraction for a native buffer. To create a buffer, one needs to populate BufferDesc structure and call IRenderDevice::CreateBuffer() method as in the following example:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); While there is usually just one buffer object, different APIs use very different approaches to represent textures. For instance, in Direct3D11, there are ID3D11Texture1D, ID3D11Texture2D, and ID3D11Texture3D objects. In OpenGL, there is individual object for every texture dimension (1D, 2D, 3D, Cube), which may be a texture array, which may also be multisampled (i.e. GL_TEXTURE_2D_MULTISAMPLE_ARRAY). As a result there are nine different GL texture types that Diligent Engine may create under the hood. In Direct3D12, there is only one resource interface. Diligent Engine hides all these details in ITexture interface. There is only one  IRenderDevice::CreateTexture() method that is capable of creating all texture types. Dimension, format, array size and all other parameters are specified by the members of the TextureDesc structure:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); If native API supports multithreaded resource creation, textures and buffers can be created by multiple threads simultaneously.
      Interoperability with native API provides access to the native buffer/texture objects and also allows creating Diligent Engine objects from native handles. It allows applications seamlessly integrate native API-specific code with Diligent Engine.
      Next-generation APIs allow fine level-control over how resources are allocated. Diligent Engine does not currently expose this functionality, but it can be added by implementing IResourceAllocator interface that encapsulates specifics of resource allocation and providing this interface to CreateBuffer() or CreateTexture() methods. If null is provided, default allocator should be used.
      Initializing the Pipeline State
      As it was mentioned earlier, Diligent Engine follows next-gen APIs to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.). This approach maps directly to Direct3D12/Vulkan, but is also beneficial for older APIs as it eliminates pipeline misconfiguration errors. With many individual calls tweaking various GPU pipeline settings it is very easy to forget to set one of the states or assume the stage is already properly configured when in fact it is not. Using pipeline state object helps avoid these problems as all stages are configured at once.
      Creating Shaders
      While in earlier APIs shaders were bound separately, in the next-generation APIs as well as in Diligent Engine shaders are part of the pipeline state object. The biggest challenge when authoring shaders is that Direct3D and OpenGL/Vulkan use different shader languages (while Apple uses yet another language in their Metal API). Maintaining two versions of every shader is not an option for real applications and Diligent Engine implements shader source code converter that allows shaders authored in HLSL to be translated to GLSL. To create a shader, one needs to populate ShaderCreationAttribs structure. SourceLanguage member of this structure tells the system which language the shader is authored in:
      SHADER_SOURCE_LANGUAGE_DEFAULT - The shader source language matches the underlying graphics API: HLSL for Direct3D11/Direct3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. SHADER_SOURCE_LANGUAGE_GLSL - The shader source is in GLSL. There is currently no GLSL to HLSL converter, so this value should only be used for OpenGL and OpenGLES modes. There are two ways to provide the shader source code. The first way is to use Source member. The second way is to provide a file path in FilePath member. Since the engine is entirely decoupled from the platform and the host file system is platform-dependent, the structure exposes pShaderSourceStreamFactory member that is intended to provide the engine access to the file system. If FilePath is provided, shader source factory must also be provided. If the shader source contains any #include directives, the source stream factory will also be used to load these files. The engine provides default implementation for every supported platform that should be sufficient in most cases. Custom implementation can be provided when needed.
      When sampling a texture in a shader, the texture sampler was traditionally specified as separate object that was bound to the pipeline at run time or set as part of the texture object itself. However, in most cases it is known beforehand what kind of sampler will be used in the shader. Next-generation APIs expose new type of sampler called static sampler that can be initialized directly in the pipeline state. Diligent Engine exposes this functionality: when creating a shader, textures can be assigned static samplers. If static sampler is assigned, it will always be used instead of the one initialized in the texture shader resource view. To initialize static samplers, prepare an array of StaticSamplerDesc structures and initialize StaticSamplers and NumStaticSamplers members. Static samplers are more efficient and it is highly recommended to use them whenever possible. On older APIs, static samplers are emulated via generic sampler objects.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] = {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader );
      Creating the Pipeline State Object
      After all required shaders are created, the rest of the fields of the PipelineStateDesc structure provide depth-stencil, rasterizer, and blend state descriptions, the number and format of render targets, input layout format, etc. For instance, rasterizer state can be described as follows:
      PipelineStateDesc PSODesc; RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; RasterizerDesc.AntialiasedLineEnable = False; Depth-stencil and blend states are defined in a similar fashion.
      Another important thing that pipeline state object encompasses is the input layout description that defines how inputs to the vertex shader, which is the very first shader stage, should be read from the memory. Input layout may define several vertex streams that contain values of different formats and sizes:
      // Define input layout InputLayoutDesc &Layout = PSODesc.GraphicsPipeline.InputLayout; LayoutElement TextLayoutElems[] = {     LayoutElement( 0, 0, 3, VT_FLOAT32, False ),     LayoutElement( 1, 0, 4, VT_UINT8, True ),     LayoutElement( 2, 0, 2, VT_FLOAT32, False ), }; Layout.LayoutElements = TextLayoutElems; Layout.NumElements = _countof( TextLayoutElems ); Finally, pipeline state defines primitive topology type. When all required members are initialized, a pipeline state object can be created by IRenderDevice::CreatePipelineState() method:
      // Define shader and primitive topology PSODesc.GraphicsPipeline.PrimitiveTopologyType = PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; PSODesc.GraphicsPipeline.pVS = pVertexShader; PSODesc.GraphicsPipeline.pPS = pPixelShader; PSODesc.Name = "My pipeline state"; m_pDev->CreatePipelineState(PSODesc, &m_pPSO); When PSO object is bound to the pipeline, the engine invokes all API-specific commands to set all states specified by the object. In case of Direct3D12 this maps directly to setting the D3D12 PSO object. In case of Direct3D11, this involves setting individual state objects (such as rasterizer and blend states), shaders, input layout etc. In case of OpenGL, this requires a number of fine-grain state tweaking calls. Diligent Engine keeps track of currently bound states and only calls functions to update these states that have actually changed.
      Binding Shader Resources
      Direct3D11 and OpenGL utilize fine-grain resource binding models, where an application binds individual buffers and textures to certain shader or program resource binding slots. Direct3D12 uses a very different approach, where resource descriptors are grouped into tables, and an application can bind all resources in the table at once by setting the table in the command list. Resource binding model in Diligent Engine is designed to leverage this new method. It introduces a new object called shader resource binding that encapsulates all resource bindings required for all shaders in a certain pipeline state. It also introduces the classification of shader variables based on the frequency of expected change that helps the engine group them into tables under the hood:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. Shader variable type must be specified during shader creation by populating an array of ShaderVariableDesc structures and initializing ShaderCreationAttribs::Desc::VariableDesc and ShaderCreationAttribs::Desc::NumVariables members (see example of shader creation above).
      Static variables cannot be changed once a resource is bound to the variable. They are bound directly to the shader object. For instance, a shadow map texture is not expected to change after it is created, so it can be bound directly to the shader:
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new Shader Resource Binding object (SRB) that is created by the pipeline state (IPipelineState::CreateShaderResourceBinding()):
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Note that an SRB is only compatible with the pipeline state it was created from. SRB object inherits all static bindings from shaders in the pipeline, but is not allowed to change them.
      Mutable resources can only be set once for every instance of a shader resource binding. Such resources are intended to define specific material properties. For instance, a diffuse texture for a specific material is not expected to change once the material is defined and can be set right after the SRB object has been created:
      m_pSRB->GetVariable(SHADER_TYPE_PIXEL, "tex2DDiffuse")->Set(pDiffuseTexSRV); In some cases it is necessary to bind a new resource to a variable every time a draw command is invoked. Such variables should be labeled as dynamic, which will allow setting them multiple times through the same SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); Under the hood, the engine pre-allocates descriptor tables for static and mutable resources when an SRB objcet is created. Space for dynamic resources is dynamically allocated at run time. Static and mutable resources are thus more efficient and should be used whenever possible.
      As you can see, Diligent Engine does not expose low-level details of how resources are bound to shader variables. One reason for this is that these details are very different for various APIs. The other reason is that using low-level binding methods is extremely error-prone: it is very easy to forget to bind some resource, or bind incorrect resource such as bind a buffer to the variable that is in fact a texture, especially during shader development when everything changes fast. Diligent Engine instead relies on shader reflection system to automatically query the list of all shader variables. Grouping variables based on three types mentioned above allows the engine to create optimized layout and take heavy lifting of matching resources to API-specific resource location, register or descriptor in the table.
      This post gives more details about the resource binding model in Diligent Engine.
      Setting the Pipeline State and Committing Shader Resources
      Before any draw or compute command can be invoked, the pipeline state needs to be bound to the context:
      m_pContext->SetPipelineState(m_pPSO); Under the hood, the engine sets the internal PSO object in the command list or calls all the required native API functions to properly configure all pipeline stages.
      The next step is to bind all required shader resources to the GPU pipeline, which is accomplished by IDeviceContext::CommitShaderResources() method:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); The method takes a pointer to the shader resource binding object and makes all resources the object holds available for the shaders. In the case of D3D12, this only requires setting appropriate descriptor tables in the command list. For older APIs, this typically requires setting all resources individually.
      Next-generation APIs require the application to track the state of every resource and explicitly inform the system about all state transitions. For instance, if a texture was used as render target before, while the next draw command is going to use it as shader resource, a transition barrier needs to be executed. Diligent Engine does the heavy lifting of state tracking.  When CommitShaderResources() method is called with COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES flag, the engine commits and transitions resources to correct states at the same time. Note that transitioning resources does introduce some overhead. The engine tracks state of every resource and it will not issue the barrier if the state is already correct. But checking resource state is an overhead that can sometimes be avoided. The engine provides IDeviceContext::TransitionShaderResources() method that only transitions resources:
      m_pContext->TransitionShaderResources(m_pPSO, m_pSRB); In some scenarios it is more efficient to transition resources once and then only commit them.
      Invoking Draw Command
      The final step is to set states that are not part of the PSO, such as render targets, vertex and index buffers. Diligent Engine uses Direct3D11-syle API that is translated to other native API calls under the hood:
      ITextureView *pRTVs[] = {m_pRTV}; m_pContext->SetRenderTargets(_countof( pRTVs ), pRTVs, m_pDSV); // Clear render target and depth buffer const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); m_pContext->ClearDepthStencil(nullptr, CLEAR_DEPTH_FLAG, 1.f); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); Different native APIs use various set of function to execute draw commands depending on command details (if the command is indexed, instanced or both, what offsets in the source buffers are used etc.). For instance, there are 5 draw commands in Direct3D11 and more than 9 commands in OpenGL with something like glDrawElementsInstancedBaseVertexBaseInstance not uncommon. Diligent Engine hides all details with single IDeviceContext::Draw() method that takes takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); For compute commands, there is IDeviceContext::DispatchCompute() method that takes DispatchComputeAttribs structure that defines compute grid dimension.
      Source Code
      Full engine source code is available on GitHub and is free to use. The repository contains tutorials, sample applications, asteroids performance benchmark and an example Unity project that uses Diligent Engine in native plugin.
      Atmospheric scattering sample demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to multiple render targets, using compute shaders and unordered access views, etc.

      Asteroids performance benchmark is based on this demo developed by Intel. It renders 50,000 unique textured asteroids and allows comparing performance of Direct3D11 and Direct3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures.

      Finally, there is an example project that shows how Diligent Engine can be integrated with Unity.

      Future Work
      The engine is under active development. It currently supports Windows desktop, Universal Windows, Linux, Android, MacOS, and iOS platforms. Direct3D11, Direct3D12, OpenGL/GLES backends are now feature complete. Vulkan backend is coming next, and Metal backend is in the plan.
    • By francoisdiy
      So I wrote a programming language called C-Lesh to program games for my game maker Platformisis. It is a scripting language which tiles into the JavaScript game engine via a memory mapper using memory mapped I/O. Currently, I am porting the language as a standalone interpreter to be able to run on the PC and possibly other devices excluding the phone. The interpreter is being written in C++ so for those of you who are C++ fans you can see the different components implemented. Some background of the language and how to program in C-Lesh can be found here:

      http://www.codeloader.net/readme.html
      As I program this thing I will post code from different components and explain.
  • Advertisement