Jump to content
  • Advertisement

Big Impact Sound | Composer for Media and Games

Recommended Posts

Big Impact Sound | Composer for Media

 

provides royalty free music and sound design for media, games, television, film, trailers, commercials, documentaries, YouTube creators, exhibits, websites, slide shows, corporate projects, podcasts, wedding albums, presentations, audiobooks, radio, apps and so much more.


Royalty free music

Big Impact Sound allows you to distribute the royalty free music worldwide  and without any additional fees.

Our music licensing system is transparent and easy:  once the music license is paid there are no copyright issues.

 

Wide range of musical styles

Our award winning team has more than two decades of experience in the creation and production of contemporary and classical music.

 

Composition on demand

Custom-made composition and sound design that will maximize the impact of your game, movie, commercial, trailer, documentary or presentation.

 

Music productions ranging from single tracks to full orchestral scores

We can provide single tracks or full scores and our team helps you with your project

from start to finish according to your specific wishes.

 

Stock Music (Library Music)

Fast and easy music and sound design browsing in our huge music library. All our tracks are immediately available for any of your projects.

 

Fast turnaround time

We are used to work with tight deadlines and will help you meet them. We are passionate about our work and always aim for perfection.

 

Contact us (by PM or by the website) to discuss how we can enhance your project with a distinctive sound identity.

https://bigimpactsound.com/

 

 

 
Edited by Big Impact Sound Composer for Media

Share this post


Link to post
Share on other sites
Advertisement

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By Stalefish
      Automated builds are a pretty important tool in a game developer's toolbox. If you're only testing your Unreal-based game in the editor (even in standalone mode), you're in for a rude awakening when new bugs pop up in a shipping build that you've never encountered before. You also don't want to manually package your game from the editor every time you want to test said shipping build, or to distribute it to your testers (or Steam for that matter).
      Unreal already provides a pretty robust build system, and it's very easy to use it in combination with build automation tools. My build system of choice is  Gradle , since I use it pretty extensively in my backend Java and Scala work. It's pretty easy to learn, runs everywhere, and gives you a lot of powerful functionality right out of the gate. This won't be a Gradle tutorial necessarily, so you can familiarize yourself with how Gradle works via the documentation on their site.
      Primarily, I use Gradle to manage a version file in my game's Git repository, which is compiled into the game so that I have version information in Blueprint and C++ logic. I use that version to prevent out-of-date clients from connecting to newer servers, and having the version compiled in makes it a little more difficult for malicious clients to spoof that build number, as opposed to having it stored in one of the INI files. I also use Gradle to automate uploading my client build to Steam via the use of steamcmd.
      Unreal's command line build tool is known as the Unreal Automation Tool. Any time you package from the editor, or use the Unreal Frontend Tool, you're using UAT on the back end. Epic provides handy scripts in the Engine/Build/BatchFiles directory to make use of UAT from the command line, namely RunUAT.bat. Since it's just a batch file, I can call it from a Gradle build script very easily.
      Here's the Gradle task snippet I use to package and archive my client:
      task packageClientUAT(type: Exec) { workingDir = "[UnrealEngineDir]\\Engine\\Build\\BatchFiles" def projectDirSafe = project.projectDir.toString().replaceAll(/[\\]/) { m -> "\\\\" } def archiveDir = projectDirSafe + "\\\\Archive\\\\Client" def archiveDirFile = new File(archiveDir) if(!archiveDirFile.exists() && !archiveDirFile.mkdirs()) { throw new Exception("Could not create client archive directory.") } if(!new File(archiveDir + "\\\\WindowsClient").deleteDir()) { throw new Exception("Could not delete final client directory.") } commandLine "cmd", "/c", "RunUAT", "BuildCookRun", "-project=\"" + projectDirSafe + "\\\\[ProjectName].uproject\"", "-noP4", "-platform=Win64", "-clientconfig=Development", "-serverconfig=Development", "-cook", "-allmaps", "-build", "-stage", "-pak", "-archive", "-noeditor", "-archivedirectory=\"" + archiveDir + "\"" } My build.gradle file is in my project's directory, alongside the uproject file. This snippet will spit the packaged client out into [ProjectDir]\Archive\Client.
      For the versioning, I have two files that Gradle directly modifies. The first, a simple text file, just has a number in it. In my [ProjectName]\Source\[ProjectName] folder, I have a [ProjectName]Build.txt file with the current build number in it. Additionally, in that same folder, I have a C++ header file with the following in it:
      #pragma once #define [PROJECT]_MAJOR_VERSION 0 #define [PROJECT]_MINOR_VERSION 1 #define [PROJECT]_BUILD_NUMBER ### #define [PROJECT]_BUILD_STAGE "Pre-Alpha" Here's my Gradle task that increments the build number in that text file, and then replaces the value in the header file:
      task incrementVersion { doLast { def version = 0 def ProjectName = "[ProjectName]" def vfile = new File("Source\\" + ProjectName + "\\" + ProjectName + "Build.txt") if(vfile.exists()) { String versionContents = vfile.text version = Integer.parseInt(versionContents) } version += 1 vfile.text = version vfile = new File("Source\\" + ProjectName + "\\" + ProjectName + "Version.h") if(vfile.exists()) { String pname = ProjectName.toUpperCase() String versionContents = vfile.text versionContents = versionContents.replaceAll(/_BUILD_NUMBER ([0-9]+)/) { m -> "_BUILD_NUMBER " + version } vfile.text = versionContents } } } I manually edit the major and minor versions and the build stage as needed, since they don't need to update with every build. You can include that header into any C++ file that needs to know the build number, and I also have a few static methods in my game's Blueprint static library that wrap them so I can get the version numbers in Blueprint.
      I also have some tasks for automatically checking those files into the Git repository and committing them:
      task prepareVersion(type: Exec) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "reset" } task stageVersion(type: Exec, dependsOn: prepareVersion) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "add", project.projectDir.toString() + "\\Source\\[ProjectName]\\[ProjectName]Build.txt", project.projectDir.toString() + "\\Source\\[ProjectName]\\[ProjectName]Version.h" } task commitVersion(type: Exec, dependsOn: stageVersion) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "commit", "-m", "\"Incrementing [ProjectName] version\"" } And here's the task I use to actually push it to Steam:
      task pushBuildSteam(type: Exec) { doFirst { println "Pushing build to Steam..." } workingDir = "[SteamworksDir]\\sdk\\tools\\ContentBuilder" commandLine "cmd", "/c", "builder\\steamcmd.exe", "+set_steam_guard_code", "[steam_guard_code]", "+login", "\"[username]\"", "\"[password]\"", "+run_app_build", "..\\scripts\\[CorrectVDFFile].vdf", "+quit" } You can also spit out a generated VDF file with the build number in the build's description so that it'll show up in SteamPipe. I have a single Gradle task I run that increments the build number, checks in those version files, packages both the client and server, and then uploads the packaged client to Steam. Another great thing about Gradle is that Jenkins has a solid plugin for it, so you can use Jenkins to set up a nice continuous integration pipeline for your game to push builds out regularly, which you absolutely should do if you're working with a team.
    • By Zamma
      Hello!
      I'm doing an A.I. course at my university, and searching on internet i learned about the GOAP A.I. system. I found it really interesting and I would like to learn more about others techniques.  So I was wondering which A.I. system is used by the civilization saga (or at least in civilization IV/V/VI) but i'm not able to find anything about that. Does anyone know where i can find some infos or docs about A.I in Civ?
    • By Sergey Vasiliev
      If you are a software developer working in the video game industry and wondering what else you could do to improve the quality of your product or make the development process easier and you don't use static analysis – it's just the right time to start doing so. You doubt that? OK, I'll try to convince you. And if you are just looking to see what coding mistakes are common with video-game and game-engine developers, then you're, again, at the right place: I have picked the most interesting ones for you.

      Why you should use static analysis
      Although video-game development includes a lot of steps, coding remains one of the basic ones. Even if you don't write thousands of code lines, you have to use various tools whose quality determines how comfortable the process is and what the ultimate result will be. If you are a developer of such tools (such as game engines), this shouldn't sound new to you.
      Why is static analysis useful in software development in general? The main reasons are as follows:
      Bugs grow costlier and more difficult to fix over time. One of the principal advantages of static analysis is detecting bugs at early development stages (you can find an error when code writing). Therefore, by using static analysis, you could make the development process easier both for your coworkers and yourself, detecting and fixing lots of bugs before they become a headache. Static analysis tools can recognize a great variety of bug patterns (copy-paste, typos, incorrect use of functions, etc.). Static analysis is generally good at detecting those defects that defy dynamic analysis. However, the opposite is also true. Negative side effects of static analysis (such as false positives) are usually 'smoothed out' through means provided by the developers of powerful analyzers. These means include various mechanisms of warning suppression (individually, by pattern, and so on), switching off irrelevant diagnostics, and excluding files and folders from analysis. By properly tweaking the analyzer settings, you can reduce the amount of 'noise' greatly. As my colleague Andrey Karpov has shown in the article about the check of EFL Core Libraries, tweaking the settings helps cut down the number of false positives to 10-15% at most. But it's all theory, and you are probably interested in real-life examples. Well then, I've got some.

      Static analysis in Unreal Engine
      If you have read this far, I assume you don't need me telling you about Unreal Engine or the Epic Games company – and if you don't hold these guys in high regard, I wonder whom you do.
      The PVS-Studio team has cooperated with Epic Games a few times to help them adopt static analysis in their project (Unreal Engine) and fix bugs and false positives issued by the analyzer. I'm sure both parties found this experience interesting and rewarding.
      One of the effects of this cooperation was adding a special flag into Unreal Engine allowing the developers to conveniently integrate static analysis into the build system of Unreal Engine projects.
      The idea is simple: the guys do care about the quality of their code and adopt various techniques available to maintain it, static analysis being one of them.

      John Carmack on static analysis
      John Carmack, one of the most renowned video-game developers, once called the adoption of static analysis one of his most important accomplishments as a programmer: "The most important thing I have done as a programmer in recent years is to aggressively pursue static code analysis." The next time you hear someone say that static analysis is a tool for newbies, show them this quote. Carmack described his experience in this article, which I strongly recommend checking out – both for motivation and general knowledge.

      Bugs found in video games and game engines with static analysis
      One of the best ways to prove that static analysis is a useful method is probably through examples showing it in action. That's what the PVS-Studio team does while checking open-source projects.
      It's a practice that everyone benefits from:
      The project authors get a bug report and a chance to fix the defects. Ideally, it should be done in quite a different way, though: they should run the analyzer and check the warnings on their own rather than fix them relying on someone else's log or article. It matters, if only because the authors of articles might miss some important details or inadvertently focus on bugs that aren't much critical to the project. The analyzer developers can use the analysis results as the basis for improving the tool, as well as demonstrating its bug-detecting capabilities. The readers learn about bug patterns, gain experience, and get started with static analysis. So, isn't that proof of the effectiveness of this approach?

      Teams already using static analysis

      While some are pondering introducing static analysis into their development process, others have long been using and benefiting from it! These are, among others, Rocksteady, Epic Games, ZeniMax Media, Oculus, Codemasters, Wargaming (source).

      Top 10 software bugs in video-game industry
      I should point right off that this is not some ultimate top list, but simply bugs which were found by PVS-Studio in video games and game engines and which I found most interesting.
      As usual, I recommend trying to find the bug in each example on your own first and only then go on reading the warning and my comments. You'll enjoy the article more that way.
      Tenth place
      Source: Anomalies in X-Ray Engine
      The tenth place is given to the bug in X-Ray Engine employed by the S.T.A.L.K.E.R game series. If you played them, you surely remember many of funny (and not quite funny) bugs they had. This is especially true for S.T.A.L.K.E.R.: Clear Sky, which was impossible to play without patches (I still remember the bug that 'killed' all my saves). The analysis revealed there were many bugs indeed. Here's one of them.
      BOOL CActor::net_Spawn(CSE_Abstract* DC) { .... m_States.empty(); .... } PVS-Studio warning: V530 The return value of function 'empty' is required to be utilized.
      The problem is quite simple: the programmer is not using the logical value returned by the empty method describing whether the container is empty or not. Since the expression contains nothing but a method call, I assume the programmer intended to clear the container but called the empty method instead of clear by mistake.
      You may argue that this bug is too plain for a Top-10 list, but that's the nice thing about it! Even though it looks straightforward to someone not involved in writing this code, 'plain' bugs like that still appear (and get caught) in various projects.
      Ninth place
      Source: Long-Awaited Check of CryEngine V
      Going on with bugs in game engines. This time it's a code fragment from CryEngine V. The number of bugs I have encountered in games based on this engine was not as large as in games based on X-Ray Engine, but it turns out it has plenty of suspicious fragments too.
      void CCryDXGLDeviceContext:: OMGetBlendState(...., FLOAT BlendFactor[4], ....) { CCryDXGLBlendState::ToInterface(ppBlendState, m_spBlendState); if ((*ppBlendState) != NULL) (*ppBlendState)->AddRef(); BlendFactor[0] = m_auBlendFactor[0]; BlendFactor[1] = m_auBlendFactor[1]; BlendFactor[2] = m_auBlendFactor[2]; BlendFactor[2] = m_auBlendFactor[3]; *pSampleMask = m_uSampleMask; } PVS-Studio warning: V519 The 'BlendFactor[2]' variable is assigned values twice successively. Perhaps this is a mistake.
      As we mentioned many times in our articles, no one is safe from mistyping. Practice has also shown more than once that static analysis is very good at detecting copy-paste-related mistakes and typos. In the code above, the values of the m_auBlendFactor array are copied to the BlendFactor array, but the programmer made a mistake by writing BlendFactor[2] twice. As a result, the value at m_auBlendFactor[3] is written to BlendFactor[2], while the value at BlendFactor[3] remains unchanged.
      Eighth place
      Source:  Unicorn in Space: Analyzing the Source Code of 'Space Engineers' 
      Let's change course a bit and take a look at some C# code. What we've got here is an example from the Space Engineers project, a 'sandbox' game about building and maintaining various structures in space. I haven't played it myself, but one guy said in the comments, "I'm not much surprised at the results ". Well, we did manage to find some bugs worth mentioning, and here's two of them.
      public void Init(string cueName) { .... if (m_arcade.Hash == MyStringHash.NullOrEmpty && m_realistic.Hash == MyStringHash.NullOrEmpty) MySandboxGame.Log.WriteLine(string.Format( "Could not find any sound for '{0}'", cueName)); else { if (m_arcade.IsNull) string.Format( "Could not find arcade sound for '{0}'", cueName); if (m_realistic.IsNull) string.Format( "Could not find realistic sound for '{0}'", cueName); } } PVS-Studio warnings:
       V3010  The return value of function 'Format' is required to be utilized.  V3010  The return value of function 'Format' is required to be utilized. As you can see, it's a common problem, both in C++-code and C#-code, where programmers ignore methods' return values. The String.Format method forms the resulting string based on the format string and objects to substitute and then returns it. In the code above, the else-branch contains two string.Format calls, but their return values are never used. It looks like the programmer intended to log these messages in the same way as they did in the then-branch of the if statement using the MySandboxGame.Log.WriteLine method.
      Seventh place
      Source: Analyzing the Quake III Arena GPL project
      Did I tell you already that static analysis is good at detecting typos? Well, here's one more example.
      void Terrain_AddMovePoint(....) { .... x = ( v[ 0 ] - p->origin[ 0 ] ) / p->scale_x; y = ( v[ 1 ] - p->origin[ 1 ] ) / p->scale_x; .... } PVS-Studio warning: V537 Consider reviewing the correctness of 'scale_x' item's usage.
      The variables x and y are assigned values, yet both expressions contain the p->scale_x subexpression, which doesn't look right. It seems the second subexpression should be p->scale_y instead.
      Sixth place
      Source: Checking the Unity C# Source Code
      Unity Technologies recently made the code of their proprietary game engine, Unity, available to the public, so we couldn't ignore the event. The check revealed a lot of interesting code fragments; here's one of them:
      public override bool IsValid() { .... return base.IsValid() && (pageSize >= 1 || pageSize <= 1000) && totalFilters <= 10; } PVS-Studio warning: V3063 A part of conditional expression is always true if it is evaluated: pageSize <= 1000.
      What we have here is an incorrect check of the range of pageSize. The programmer must have intended to check that the pageSize value was within the range [1; 1000] but made a sad mistake by typing the '||' operator instead of '&&'. The subexpression actually checks nothing.
      Fifth place
      Source: Discussing Errors in Unity3D's Open-Source Components
      This place was given to a nice bug found in Unity3D's components. The article mentioned above was written a year prior to revealing Unity's source code, but there already were interesting defects to find there at the time.
      public static CrawledMemorySnapshot Unpack(....) { .... var result = new CrawledMemorySnapshot { .... staticFields = packedSnapshot.typeDescriptions .Where(t => t.staticFieldBytes != null & t.staticFieldBytes.Length > 0) .Select(t => UnpackStaticFields(t)) .ToArray() .... }; .... } PVS-Studio warning: V3080 Possible null dereference. Consider inspecting 't.staticFieldBytes'.
      Note the lambda expression passed as an argument to the Where method. The code suggests that the typeDescriptions collection could contain elements whose staticFieldBytes member could be null – hence the check staticFieldBytes != null before accessing the Length property. However, the programmer mixed up the '&' and '&&' operators. It means that no matter the result of the left expression (true/false), the right one will also be evaluated, causing a NullReferenceException to be thrown when accessing the Length property if staticFieldBytes == null. Using the '&&' operator could help avoid this because the right expression won't be evaluated if staticFieldBytes == null.
      Although Unity was the only engine to hit this top list twice, it doesn't prevent enthusiasts from building wonderful games on it. Including one(s) about fighting bugs.
      Fourth place
      Source:  Analysis of Godot Engine's Source Code 
      Sometimes we come across interesting cases that have to do with missing keywords. For example, an exception object is created but never used because the programmer forgot to add the throw keyword. Such errors are found both in C# projects and C++ projects. There was one missing keyword in Godot Engine as well.
      Variant Variant::get(const Variant& p_index, bool *r_valid) const { .... if (ie.type == InputEvent::ACTION) { if (str =="action") { valid=true; return ie.action.action; } else if (str == "pressed") { valid=true; ie.action.pressed; } } .... } PVS-Studio warning: V607 Ownerless expression 'ie.action.pressed'.
      In the given code fragment it is obvious that a programmer wanted to return a certain value of the Variant type, depending on the values ie.type and str. Yet only one of the return statements – return ie.action.action; – is written properly, while the other is lacking the return operator, which prevents the needed value from returning and forces the method to keep executing.
      Third place
      Source: PVS-Studio: analyzing Doom 3 code
      Now we've reached the Top-3 section. The third place is awarded to a small code fragment of Doom 3's source code. As I already said, the fact that a bug may look straightforward to an outside observer and make you wonder how one could have made such a mistake at all shouldn't be confusing: there are actually all sorts of bugs to be found in the field...
      void Sys_GetCurrentMemoryStatus( sysMemoryStats_t &stats ) { .... memset( &statex, sizeof( statex ), 0 ); .... } PVS-Studio warning: V575 The 'memset' function processes '0' elements. Inspect the third argument.
      To figure this error out, we should recall the signature of the memset function:
      void* memset(void* dest, int ch, size_t count); If you compare it with the call above, you'll notice that the last two arguments are swapped; as a result, some memory block that was meant to be cleared will stay unchanged.
      Second place
      The second place is taken by a bug found in the code of the Xenko game engine written in C#.
      Source: Catching Errors in the Xenko Game Engine
      private static ImageDescription CreateDescription(TextureDimension dimension, int width, int height, int depth, ....) { .... } public static Image New3D(int width, int height, int depth, ....) { return new Image(CreateDescription(TextureDimension.Texture3D, width, width, depth, mipMapCount, format, 1), dataPointer, 0, null, false); } PVS-Studio warning: V3065 Parameter 'height' is not utilized inside method's body.
      The programmer made a mistake when passing the arguments to the CreateDescription method. If you look at its signature, you'll see that the second, third, and fourth parameters are named width, height, and depth, respectively. But the call passes the arguments width, width, and depth. Looks strange, doesn't it? The analyzer, too, found it strange enough to point it out.
      First place
      Source: A Long-Awaited Check of Unreal Engine 4
      This Top-10 list is led by a bug from Unreal Engine. Just like it was with the leader of "Top 10 Bugs in the C++ Projects of 2017", I knew this bug should be given the first place the very moment I saw it.
      bool VertInfluencedByActiveBone( FParticleEmitterInstance* Owner, USkeletalMeshComponent* InSkelMeshComponent, int32 InVertexIndex, int32* OutBoneIndex = NULL); void UParticleModuleLocationSkelVertSurface::Spawn(....) { .... int32 BoneIndex1, BoneIndex2, BoneIndex3; BoneIndex1 = BoneIndex2 = BoneIndex3 = INDEX_NONE; if(!VertInfluencedByActiveBone( Owner, SourceComponent, VertIndex[0], &BoneIndex1) && !VertInfluencedByActiveBone( Owner, SourceComponent, VertIndex[1], &BoneIndex2) && !VertInfluencedByActiveBone( Owner, SourceComponent, VertIndex[2]) &BoneIndex3) { .... } PVS-Studio warning: V564 The '&' operator is applied to bool type value. You've probably forgotten to include parentheses or intended to use the '&&' operator.
      I wouldn't be surprised if you read the warning, looked at the code, and wondered, "Well, where's the '&' used instead of '&&'?" But if we simplify the conditional expression of the if statement, keeping in mind that the last parameter of the VertInfluencedByActiveBone function has a default value, this will clear it all up:
      if (!foo(....) && !foo(....) && !foo(....) & arg) Take a close look at the last subexpression:
      !VertInfluencedByActiveBone(Owner, SourceComponent, VertIndex[2]) &BoneIndex3 This parameter with the default value has messed things up: but for this value, the code would have never compiled at all. But since it's there, the code compiles successfully and the bug blends in as successfully. It's this suspicious fragment that the analyzer spotted – the infix operation '&' with the left operand of type bool and the right operand of type int32.

      Conclusion
      I hope I have convinced you that static analysis is a very useful tool when developing video games and game engines, and one more option to help you improve the quality of your code (and thus of the final product). If you are a video game industry developer, you ought to tell your coworkers about static analysis and refer them to this article. Wondering where to start? Start with PVS-Studio.
    • By SomeoneRichards
      Hi there.
      I'm looking for some quick opinions, advice or other comments on my custom engine architecture.
      For better or for worse, I have ended up with an ECS engine. I didn't intend to go this way, but countless searched through Google and the forum seem to confirm that this is the case. I have entities (mere Ids), components (pure data) and systems (holding raw resources and functionality) to operate on them. To be honest, I'm fairly happy with it.
      However, I have yet to implement any actual logic into my 'game', and have been looking around for details on the various ways of handling interactivity, specifically, interactively between entities and components.
      A topic that comes up a lot is events and event queues. I have not liked these. I don't want to add functionality to entities or components, and I don't like the idea of callbacks or event calling firing all over the place. So, I have been puzzling over this for the last two or so days. Eventually, I gave up on the musing and came to accept that some kind of event system is going to be needed. So, I had another look at the bitSquid blog (recommended on this forum), and something occurred to me. Isn't an event really just another form of entity? If it isn't, why isn't it?
      I also realised that I already have something pretty similar running in my engine now. Specifically, my (admitted quite naive) implementation works more or less like this. The scene hands a list of physicalComponents and their corresponding placementComponents, and the collisionDetection sub-system iterates through them, looking for collisions. If it finds one, it creates a collision, adds it to the list, and moves on to the next one. Once it is finished, the collisionResolution sub-system goes through the list, and handles the collisions - again, currently very naively, by bouncing the objects off of one another.
      So, I am wondering if I can just use this same approach to handle logical interactions. Entities with logical requirements have a collection of components related to interactivity (the range, the effect, and so on), and the various sub-systems iterate through potential candidates. If it notices an interaction, it creates an interactionEntity (with the necessary data) and the interactions are processed by the next sub-system.
      I guess I'm looking for some feedback on this idea before I start implementing it. The hope i for more granularity in the components, and the ability to add a logical scripting system which combines various components into potential interactions, and omits the need for any kind of event system. Or am I just repeating the general idea of events and event queues in a slightly more complicated way?
      Additionally, any comments or commentary on this approach (ECS, and so on), would be very gratefully received. I've pretty much run out of resources at this point.
      Regards,
      Simon
    • By nihitori
      This is the official Sales topic for the acclaimed Colossal Game Music Collection (100+ five-star ratings on the Unity Asset Store) and its Lite version, the Essential Game Music Collection.

      Updates will be made here every time a sale is taking place on either the Unity Asset Store or the Unreal Engine Marketplace.

      Current Sales:

      Version 2.0 Intro Sale on the Unreal Engine Marketplace -

      - Colossal Game Music Collection at 50% OFF - https://www.unrealengine.com/marketplace/colossal-game-music-collection


      Please feel free to post here any questions you might have about either the sales or the collection itself.
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!