Jump to content
  • Advertisement

C++ Can anyone see where I have gone wrong? Unreal, 1 error in class

Recommended Posts

This is from the unreal tutorial battery collector c++.

I'm learning unreal and am new to it so i couldn't guess why this is happening. Is it clear to anyone what i have to do to fix this?

gamedevPic1.png

Share this post


Link to post
Share on other sites
Advertisement

Your error says that your trying to assign a mesh as a Scene Component

PickupMesh = CreateDefaultSubobject<UStaticMeshComponent>(TEXT("PickupMesh"));
RootComponent = PickupMesh; //This is where you make the mistake. A mesh != a object.

Look at the tutorial again and see what they do at this point.

Share this post


Link to post
Share on other sites

That's strange, we do the same thing in our project (assign a UStaticMeshComponent to RootComponent), and it works fine. UStaticMeshComponent inherits from USceneComponent, so such assignment is valid.

Does it work, if you do an explicit cast?

RootComponent = (USceneComponent*)PickupMesh;

Don't know, if it has anything to do with the problem, but it looks like you're using an older version of Visual Studio (2013?), while they recommend VS2017 for UE4.18 (although we use VS2015 without any issues).

UPDATE: I guess, it doesn't immediately follow, that the assignment of UStaticMeshComponent* to USceneComponent* is valid, only that a cast from UStaticMeshComponent* to USceneComponent* is. And unfortunately I'm not the right person to explain, whether such cast will happen implicitly, and what kind of constructor you need in order for it to happen.

Edited by dietrich

Share this post


Link to post
Share on other sites

@Scouting Ninja and @dietrich thank you for replying. I really appreciate the posts. I had to go and work later that day when I made my thread so I was unable to reply any sooner. I will try out what has been mentioned here and shall let you know how I get on. Thanks for the feedback.

edit: I'm using VS'15 btw.

Edited by GameDevCoder

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By Stalefish
      Automated builds are a pretty important tool in a game developer's toolbox. If you're only testing your Unreal-based game in the editor (even in standalone mode), you're in for a rude awakening when new bugs pop up in a shipping build that you've never encountered before. You also don't want to manually package your game from the editor every time you want to test said shipping build, or to distribute it to your testers (or Steam for that matter).
      Unreal already provides a pretty robust build system, and it's very easy to use it in combination with build automation tools. My build system of choice is  Gradle , since I use it pretty extensively in my backend Java and Scala work. It's pretty easy to learn, runs everywhere, and gives you a lot of powerful functionality right out of the gate. This won't be a Gradle tutorial necessarily, so you can familiarize yourself with how Gradle works via the documentation on their site.
      Primarily, I use Gradle to manage a version file in my game's Git repository, which is compiled into the game so that I have version information in Blueprint and C++ logic. I use that version to prevent out-of-date clients from connecting to newer servers, and having the version compiled in makes it a little more difficult for malicious clients to spoof that build number, as opposed to having it stored in one of the INI files. I also use Gradle to automate uploading my client build to Steam via the use of steamcmd.
      Unreal's command line build tool is known as the Unreal Automation Tool. Any time you package from the editor, or use the Unreal Frontend Tool, you're using UAT on the back end. Epic provides handy scripts in the Engine/Build/BatchFiles directory to make use of UAT from the command line, namely RunUAT.bat. Since it's just a batch file, I can call it from a Gradle build script very easily.
      Here's the Gradle task snippet I use to package and archive my client:
      task packageClientUAT(type: Exec) { workingDir = "[UnrealEngineDir]\\Engine\\Build\\BatchFiles" def projectDirSafe = project.projectDir.toString().replaceAll(/[\\]/) { m -> "\\\\" } def archiveDir = projectDirSafe + "\\\\Archive\\\\Client" def archiveDirFile = new File(archiveDir) if(!archiveDirFile.exists() && !archiveDirFile.mkdirs()) { throw new Exception("Could not create client archive directory.") } if(!new File(archiveDir + "\\\\WindowsClient").deleteDir()) { throw new Exception("Could not delete final client directory.") } commandLine "cmd", "/c", "RunUAT", "BuildCookRun", "-project=\"" + projectDirSafe + "\\\\[ProjectName].uproject\"", "-noP4", "-platform=Win64", "-clientconfig=Development", "-serverconfig=Development", "-cook", "-allmaps", "-build", "-stage", "-pak", "-archive", "-noeditor", "-archivedirectory=\"" + archiveDir + "\"" } My build.gradle file is in my project's directory, alongside the uproject file. This snippet will spit the packaged client out into [ProjectDir]\Archive\Client.
      For the versioning, I have two files that Gradle directly modifies. The first, a simple text file, just has a number in it. In my [ProjectName]\Source\[ProjectName] folder, I have a [ProjectName]Build.txt file with the current build number in it. Additionally, in that same folder, I have a C++ header file with the following in it:
      #pragma once #define [PROJECT]_MAJOR_VERSION 0 #define [PROJECT]_MINOR_VERSION 1 #define [PROJECT]_BUILD_NUMBER ### #define [PROJECT]_BUILD_STAGE "Pre-Alpha" Here's my Gradle task that increments the build number in that text file, and then replaces the value in the header file:
      task incrementVersion { doLast { def version = 0 def ProjectName = "[ProjectName]" def vfile = new File("Source\\" + ProjectName + "\\" + ProjectName + "Build.txt") if(vfile.exists()) { String versionContents = vfile.text version = Integer.parseInt(versionContents) } version += 1 vfile.text = version vfile = new File("Source\\" + ProjectName + "\\" + ProjectName + "Version.h") if(vfile.exists()) { String pname = ProjectName.toUpperCase() String versionContents = vfile.text versionContents = versionContents.replaceAll(/_BUILD_NUMBER ([0-9]+)/) { m -> "_BUILD_NUMBER " + version } vfile.text = versionContents } } } I manually edit the major and minor versions and the build stage as needed, since they don't need to update with every build. You can include that header into any C++ file that needs to know the build number, and I also have a few static methods in my game's Blueprint static library that wrap them so I can get the version numbers in Blueprint.
      I also have some tasks for automatically checking those files into the Git repository and committing them:
      task prepareVersion(type: Exec) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "reset" } task stageVersion(type: Exec, dependsOn: prepareVersion) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "add", project.projectDir.toString() + "\\Source\\[ProjectName]\\[ProjectName]Build.txt", project.projectDir.toString() + "\\Source\\[ProjectName]\\[ProjectName]Version.h" } task commitVersion(type: Exec, dependsOn: stageVersion) { workingDir = project.projectDir.toString() commandLine "cmd", "/c", "git", "commit", "-m", "\"Incrementing [ProjectName] version\"" } And here's the task I use to actually push it to Steam:
      task pushBuildSteam(type: Exec) { doFirst { println "Pushing build to Steam..." } workingDir = "[SteamworksDir]\\sdk\\tools\\ContentBuilder" commandLine "cmd", "/c", "builder\\steamcmd.exe", "+set_steam_guard_code", "[steam_guard_code]", "+login", "\"[username]\"", "\"[password]\"", "+run_app_build", "..\\scripts\\[CorrectVDFFile].vdf", "+quit" } You can also spit out a generated VDF file with the build number in the build's description so that it'll show up in SteamPipe. I have a single Gradle task I run that increments the build number, checks in those version files, packages both the client and server, and then uploads the packaged client to Steam. Another great thing about Gradle is that Jenkins has a solid plugin for it, so you can use Jenkins to set up a nice continuous integration pipeline for your game to push builds out regularly, which you absolutely should do if you're working with a team.
    • By MoreLion
      Hey all! we are a team of 7 looking for a game designer, im a game designer but need help as i am doing multiple things at once, the game is being developed in UE4.
      the game is a futuristic action adventure game where you play as a 21 year old female who has woken up in a simulation not knowing who or where she is, but when all is unfolding the simulation gets hacked leaving eveline with no choice but to escape before she is killed inside the simulation.
      we are also looking for other members aswell wether you be a animator a ue4 game developer or that just email me below.
      if interested email liondude12@gmail.com
    • By chiffre
      Introduction:
      In general my questions pertain to the differences between floating- and fixed-point data. Additionally I would like to understand when it can be advantageous to prefer fixed-point representation over floating-point representation in the context of vertex data and how the hardware deals with the different data-types. I believe I should be able to reduce the amount of data (bytes) necessary per vertex by choosing the most opportune representations for my vertex attributes. Thanks ahead of time if you, the reader, are considering the effort of reading this and helping me.
      I found an old topic that shows this is possible in principal, but I am not sure I understand what the pitfalls are when using fixed-point representation and whether there are any hardware-based performance advantages/disadvantages.
      (TLDR at bottom)
      The Actual Post:
      To my understanding HLSL/D3D11 offers not just the traditional floating point model in half-,single-, and double-precision, but also the fixed-point model in form of signed/unsigned normalized integers in 8-,10-,16-,24-, and 32-bit variants. Both models offer a finite sequence of "grid-points". The obvious difference between the two models is that the fixed-point model offers a constant spacing between values in the normalized range of [0,1] or [-1,1], while the floating point model allows for smaller "deltas" as you get closer to 0, and larger "deltas" the further you are away from 0.
      To add some context, let me define a struct as an example:
      struct VertexData { float[3] position; //3x32-bits float[2] texCoord; //2x32-bits float[3] normals; //3x32-bits } //Total of 32 bytes Every vertex gets a position, a coordinate on my texture, and a normal to do some light calculations. In this case we have 8x32=256bits per vertex. Since the texture coordinates lie in the interval [0,1] and the normal vector components are in the interval [-1,1] it would seem useful to use normalized representation as suggested in the topic linked at the top of the post. The texture coordinates might as well be represented in a fixed-point model, because it seems most useful to be able to sample the texture in a uniform manner, as the pixels don't get any "denser" as we get closer to 0. In other words the "delta" does not need to become any smaller as the texture coordinates approach (0,0). A similar argument can be made for the normal-vector, as a normal vector should be normalized anyway, and we want as many points as possible on the sphere around (0,0,0) with a radius of 1, and we don't care about precision around the origin. Even if we have large textures such as 4k by 4k (or the maximum allowed by D3D11, 16k by 16k) we only need as many grid-points on one axis, as there are pixels on one axis. An unsigned normalized 14 bit integer would be ideal, but because it is both unsupported and impractical, we will stick to an unsigned normalized 16 bit integer. The same type should take care of the normal vector coordinates, and might even be a bit overkill.
      struct VertexData { float[3] position; //3x32-bits uint16_t[2] texCoord; //2x16bits uint16_t[3] normals; //3x16bits } //Total of 22 bytes Seems like a good start, and we might even be able to take it further, but before we pursue that path, here is my first question: can the GPU even work with the data in this format, or is all I have accomplished minimizing CPU-side RAM usage? Does the GPU have to convert the texture coordinates back to a floating-point model when I hand them over to the sampler in my pixel shader? I have looked up the data types for HLSL and I am not sure I even comprehend how to declare the vertex input type in HLSL. Would the following work?
      struct VertexInputType { float3 pos; //this one is obvious unorm half2 tex; //half corresponds to a 16-bit float, so I assume this is wrong, but this the only 16-bit type I found on the linked MSDN site snorm half3 normal; //same as above } I assume this is possible somehow, as I have found input element formats such as: DXGI_FORMAT_R16G16B16A16_SNORM and DXGI_FORMAT_R16G16B16A16_UNORM (also available with a different number of components, as well as different component lengths). I might have to avoid 3-component vectors because there is no 3-component 16-bit input element format, but that is the least of my worries. The next question would be: what happens with my normals if I try to do lighting calculations with them in such a normalized-fixed-point format? Is there no issue as long as I take care not to mix floating- and fixed-point data? Or would that work as well? In general this gives rise to the question: how does the GPU handle fixed-point arithmetic? Is it the same as integer-arithmetic, and/or is it faster/slower than floating-point arithmetic?
      Assuming that we still have a valid and useful VertexData format, how far could I take this while remaining on the sensible side of what could be called optimization? Theoretically I could use the an input element format such as DXGI_FORMAT_R10G10B10A2_UNORM to pack my normal coordinates into a 10-bit fixed-point format, and my verticies (in object space) might even be representable in a 16-bit unsigned normalized fixed-point format. That way I could end up with something like the following struct:
      struct VertexData { uint16_t[3] pos; //3x16bits uint16_t[2] texCoord; //2x16bits uint32_t packedNormals; //10+10+10+2bits } //Total of 14 bytes Could I use a vertex structure like this without too much performance-loss on the GPU-side? If the GPU has to execute some sort of unpacking algorithm in the background I might as well let it be. In the end I have a functioning deferred renderer, but I would like to reduce the memory footprint of the huge amount of vertecies involved in rendering my landscape. 
      TLDR: I have a lot of vertices that I need to render and I want to reduce the RAM-usage without introducing crazy compression/decompression algorithms to the CPU or GPU. I am hoping to find a solution by involving fixed-point data-types, but I am not exactly sure how how that would work.
    • By babaliaris
      Well i found out Here what's the problem and how to solve it (Something about world coordinates and object coordinates) but i can't understand how ti works. Can you show me some examples in code on how you implement this???
       
      Scaling Matrix:
      m_Impl->scale = glm::mat4(1.0f); m_Impl->scale = glm::scale(m_Impl->scale, glm::vec3(width, height, 0)); Verticies:
      //Verticies. float verticies[] = { //Positions. //Texture Coordinates. 1.0f, 1.0f, 0.0f, 0.0f, 2.0f, 1.0f, 1.0f, 0.0f, 2.0f, 2.0f, 1.0f, 1.0f, 1.0f, 2.0f, 0.0f, 1.0f }; Rendering:
      //Projection Matrix. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the uniform. material->program->setUniformMat4f("u_MVP", proj * model); //model is the scale matrix from the previous code. //Draw. glDrawElements(GL_TRIANGLES, material->ibo->GetCount(), GL_UNSIGNED_INT, NULL);  
      Shader:
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 texCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP*aPos; texCoord = aTexCoord; } #shader fragment #version 330 core out vec4 colors; in vec2 texCoord; uniform sampler2D u_Texture; void main() { colors = texture(u_Texture, texCoord); }  
      Before Scaling (It's down there on the bottom left corner as a dot).

       
      After Scaling

       
      Problem: Why does the position also changes?? If you see my Verticies, the first position starts at 1.0f, 1.0f , so when i'm scaling it should stay at that position
    • By Bret Marisnick
      Hey guys!

      Ok so I have been developing some ideas to get to work on and I have one specifically that I need some assistance with. The App will be called “A Walk On the Beach.” It’s somewhat of a 3D representation of the Apple app “Calm.” The idea is that you can take a virtual stroll up and down a pier on the beach. Building the level of a pier seems self explanatory to me... but my question is this.... How could I make it so that players can leave notes on the pier for other users to read and or respond to? I was thinking something like a virtual “peg board” at the end of the pier where players can “pin up” pictures or post it’s.

      Any advice on how I could accomplish this would be helpful!
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!