Jump to content
  • Advertisement
Sign in to follow this  

DX11 Is there any advantage in using float2 for POSITION in shaders?

Recommended Posts

For a 2D game, does using a float2 for position increases performance in any way?

I know that in the end the vertex shader will have to return a float4 anyway, but does using a float2 decreases the amount of data that will have to be sent from the CPU to the GPU?


Share this post

Link to post
Share on other sites

Seems like you already answered your question. "Increase performance" is a very vague term, in order to quantify performance you need metrics. In either case since you mentioned a 2D use case, if all your objects are in the same place ( ie no parallax ), the using just 2 floats to represent position makes sense. There are certain inherent behavior of the GPU that you cannot control and which may have no bearing on what you put in, with the vertex shader position output size being one of those. The general guidance is to use the smallest type( size and count ) possible while maintaining enough precision in order to reduce the amount of data transferred from CPU to GPU ( bandwidth ).

Share this post

Link to post
Share on other sites

Yes, but this only becomes an issue if you have a truly massive amount of vertices.

Note that the worst case vertex size is that which is just over multiples of 32 bytes, since the vertex cache is usually partitioned at that size. If you're under that anyway, don't worry.

Share this post

Link to post
Share on other sites

1 - Smaller graphical assets, smaller installer package / download.

2 - Faster loading to the GPU.

3 - Faster rendering, less verts to process.


Seems like a win-win situation to me.

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By Alexander Winter
      Jumpaï is a game about creating platformer levels and playing them online with everyone. Will you become the most popular level maker or will you be a speedrunner holding world records on everyone's levels? More into casual play? No problem! You can happily play through the giant level database or chill at people's hub. Meet new people, make new friends, learn to master the game by asking pros or ask for people's favorite tricks on level making. Download here: https://jumpai.itch.io/jumpai Discord: https://discord.gg/dwRTNCG   Trailer:      (The following screenshots are older but still a bit representative)  

      Unlike other games of its genre, Jumpaï is about playing levels with everyone in real time. You have the fun to see how other people are playing and get to realize you are not the only one failing that jump!

      The game is currently into development and still have lots to do. I am looking for people willing to help how they can. Developer? Graphist? Play tester? Sound designer? Game designer? I'm welcoming any talent. The project is so big I have a lot of work to do in all areas. Server backend, UI/UX, Game networking, Gameplay and even the website some day. As you can see from the default buttons, the game has been made with LibGDX. This project is a perfect opportunity for you to get better in various fields as well as showing off your skills.

      If you plan to take an important role into the development of the game, we will discuss how you will get paid once the game generates money. Note that I'm not working on the game full-time. I'm studying full-time and working on it is a hobby. The project has started in november 2016 and experiences heavy progress.

      So, are you interested? If so join me on my discord https://discord.gg/dwRTNCG and I'll answer all your questions.

      Additionnal screenshots:

    • By Adrian Bigaj

      The game: https://www.combo-clicks.com/
      DEV blog (so everyone can read the journey and some history):
      Feedback for Combo Clicks and also IDEAS for future games will be super appreciated (Hyper Casuals done in 3-4 weeks, each game with React Native).
      I will try to post on my blog atleast on weekly basis (both for gamers and developers) 
      Thank you!

    • By chiffre
      In general my questions pertain to the differences between floating- and fixed-point data. Additionally I would like to understand when it can be advantageous to prefer fixed-point representation over floating-point representation in the context of vertex data and how the hardware deals with the different data-types. I believe I should be able to reduce the amount of data (bytes) necessary per vertex by choosing the most opportune representations for my vertex attributes. Thanks ahead of time if you, the reader, are considering the effort of reading this and helping me.
      I found an old topic that shows this is possible in principal, but I am not sure I understand what the pitfalls are when using fixed-point representation and whether there are any hardware-based performance advantages/disadvantages.
      (TLDR at bottom)
      The Actual Post:
      To my understanding HLSL/D3D11 offers not just the traditional floating point model in half-,single-, and double-precision, but also the fixed-point model in form of signed/unsigned normalized integers in 8-,10-,16-,24-, and 32-bit variants. Both models offer a finite sequence of "grid-points". The obvious difference between the two models is that the fixed-point model offers a constant spacing between values in the normalized range of [0,1] or [-1,1], while the floating point model allows for smaller "deltas" as you get closer to 0, and larger "deltas" the further you are away from 0.
      To add some context, let me define a struct as an example:
      struct VertexData { float[3] position; //3x32-bits float[2] texCoord; //2x32-bits float[3] normals; //3x32-bits } //Total of 32 bytes Every vertex gets a position, a coordinate on my texture, and a normal to do some light calculations. In this case we have 8x32=256bits per vertex. Since the texture coordinates lie in the interval [0,1] and the normal vector components are in the interval [-1,1] it would seem useful to use normalized representation as suggested in the topic linked at the top of the post. The texture coordinates might as well be represented in a fixed-point model, because it seems most useful to be able to sample the texture in a uniform manner, as the pixels don't get any "denser" as we get closer to 0. In other words the "delta" does not need to become any smaller as the texture coordinates approach (0,0). A similar argument can be made for the normal-vector, as a normal vector should be normalized anyway, and we want as many points as possible on the sphere around (0,0,0) with a radius of 1, and we don't care about precision around the origin. Even if we have large textures such as 4k by 4k (or the maximum allowed by D3D11, 16k by 16k) we only need as many grid-points on one axis, as there are pixels on one axis. An unsigned normalized 14 bit integer would be ideal, but because it is both unsupported and impractical, we will stick to an unsigned normalized 16 bit integer. The same type should take care of the normal vector coordinates, and might even be a bit overkill.
      struct VertexData { float[3] position; //3x32-bits uint16_t[2] texCoord; //2x16bits uint16_t[3] normals; //3x16bits } //Total of 22 bytes Seems like a good start, and we might even be able to take it further, but before we pursue that path, here is my first question: can the GPU even work with the data in this format, or is all I have accomplished minimizing CPU-side RAM usage? Does the GPU have to convert the texture coordinates back to a floating-point model when I hand them over to the sampler in my pixel shader? I have looked up the data types for HLSL and I am not sure I even comprehend how to declare the vertex input type in HLSL. Would the following work?
      struct VertexInputType { float3 pos; //this one is obvious unorm half2 tex; //half corresponds to a 16-bit float, so I assume this is wrong, but this the only 16-bit type I found on the linked MSDN site snorm half3 normal; //same as above } I assume this is possible somehow, as I have found input element formats such as: DXGI_FORMAT_R16G16B16A16_SNORM and DXGI_FORMAT_R16G16B16A16_UNORM (also available with a different number of components, as well as different component lengths). I might have to avoid 3-component vectors because there is no 3-component 16-bit input element format, but that is the least of my worries. The next question would be: what happens with my normals if I try to do lighting calculations with them in such a normalized-fixed-point format? Is there no issue as long as I take care not to mix floating- and fixed-point data? Or would that work as well? In general this gives rise to the question: how does the GPU handle fixed-point arithmetic? Is it the same as integer-arithmetic, and/or is it faster/slower than floating-point arithmetic?
      Assuming that we still have a valid and useful VertexData format, how far could I take this while remaining on the sensible side of what could be called optimization? Theoretically I could use the an input element format such as DXGI_FORMAT_R10G10B10A2_UNORM to pack my normal coordinates into a 10-bit fixed-point format, and my verticies (in object space) might even be representable in a 16-bit unsigned normalized fixed-point format. That way I could end up with something like the following struct:
      struct VertexData { uint16_t[3] pos; //3x16bits uint16_t[2] texCoord; //2x16bits uint32_t packedNormals; //10+10+10+2bits } //Total of 14 bytes Could I use a vertex structure like this without too much performance-loss on the GPU-side? If the GPU has to execute some sort of unpacking algorithm in the background I might as well let it be. In the end I have a functioning deferred renderer, but I would like to reduce the memory footprint of the huge amount of vertecies involved in rendering my landscape. 
      TLDR: I have a lot of vertices that I need to render and I want to reduce the RAM-usage without introducing crazy compression/decompression algorithms to the CPU or GPU. I am hoping to find a solution by involving fixed-point data-types, but I am not exactly sure how how that would work.
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
    • By DevAndroid
      Hello everyone,
      I'm trying to display a 2D texture to screen but the rendering isn't working correctly.
      First of all I did follow this tutorial to be able to render a Text to screen (I adapted it to render with OpenGL ES 2.0) : https://learnopengl.com/code_viewer.php?code=in-practice/text_rendering
      So here is the shader I'm using :
      const char gVertexShader[] = "#version 320 es\n" "layout (location = 0) in vec4 vertex;\n" "out vec2 TexCoords;\n" "uniform mat4 projection;\n" "void main() {\n" " gl_Position = projection * vec4(vertex.xy, 0.0, 1.0);\n" " TexCoords = vertex.zw;\n" "}\n"; const char gFragmentShader[] = "#version 320 es\n" "precision mediump float;\n" "in vec2 TexCoords;\n" "out vec4 color;\n" "uniform sampler2D text;\n" "uniform vec3 textColor;\n" "void main() {\n" " vec4 sampled = vec4(1.0, 1.0, 1.0, texture(text, TexCoords).r);\n" " color = vec4(textColor, 1.0) * sampled;\n" "}\n"; The render text works very well so I would like to keep those Shaders program to render a texture loaded from PNG.
      For that I'm using libPNG to load the PNG to a texture, here is my code :
      GLuint Cluster::loadPngFromPath(const char *file_name, int *width, int *height) { png_byte header[8]; FILE *fp = fopen(file_name, "rb"); if (fp == 0) { return 0; } fread(header, 1, 8, fp); if (png_sig_cmp(header, 0, 8)) { fclose(fp); return 0; } png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!png_ptr) { fclose(fp); return 0; } png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { png_destroy_read_struct(&png_ptr, (png_infopp)NULL, (png_infopp)NULL); fclose(fp); return 0; } png_infop end_info = png_create_info_struct(png_ptr); if (!end_info) { png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL); fclose(fp); return 0; } if (setjmp(png_jmpbuf(png_ptr))) { png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); fclose(fp); return 0; } png_init_io(png_ptr, fp); png_set_sig_bytes(png_ptr, 8); png_read_info(png_ptr, info_ptr); int bit_depth, color_type; png_uint_32 temp_width, temp_height; png_get_IHDR(png_ptr, info_ptr, &temp_width, &temp_height, &bit_depth, &color_type, NULL, NULL, NULL); if (width) { *width = temp_width; } if (height) { *height = temp_height; } png_read_update_info(png_ptr, info_ptr); int rowbytes = png_get_rowbytes(png_ptr, info_ptr); rowbytes += 3 - ((rowbytes-1) % 4); png_byte * image_data; image_data = (png_byte *) malloc(rowbytes * temp_height * sizeof(png_byte)+15); if (image_data == NULL) { png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); fclose(fp); return 0; } png_bytep * row_pointers = (png_bytep *) malloc(temp_height * sizeof(png_bytep)); if (row_pointers == NULL) { png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); free(image_data); fclose(fp); return 0; } int i; for (i = 0; i < temp_height; i++) { row_pointers[temp_height - 1 - i] = image_data + i * rowbytes; } png_read_image(png_ptr, row_pointers); GLuint texture; glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexImage2D(GL_TEXTURE_2D, GL_ZERO, GL_RGB, temp_width, temp_height, GL_ZERO, GL_RGB, GL_UNSIGNED_BYTE, image_data); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); free(image_data); free(row_pointers); fclose(fp); return texture; } This code just generates the texture and I store the id on memory
      And then I want to display my texture on any position (X, Y) of my screen so I did the following (That's works, at least the positioning).
      //MY TEXTURE IS 32x32 pixels ! void Cluster::printTexture(GLuint idTexture, GLfloat x, GLfloat y) { glActiveTexture(GL_TEXTURE0); glBindVertexArray(VAO); GLfloat vertices[6][4] = { { x, y + 32, 0.0, 0.0 }, { x, y, 0.0, 1.0 }, { x + 32, y, 1.0, 1.0 }, { x, y + 32, 0.0, 0.0 }, { x + 32, y, 1.0, 1.0 }, { x + 32, y + 32, 1.0, 0.0 } }; glBindTexture(GL_TEXTURE_2D, idTexture); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferSubData(GL_ARRAY_BUFFER, GL_ZERO, sizeof(vertices), vertices); glBindBuffer(GL_ARRAY_BUFFER, GL_ZERO); glUniform1i(this->mTextShaderHandle, GL_ZERO); glDrawArrays(GL_TRIANGLE_STRIP, GL_ZERO, 6); } My .png is a blue square.
      The result is that my texture is not loaded correctly. It is not complete and there are many small black spots. I don't know what's going on ? It could be the vertices or the load ? Or maybe I need to add something on the shader. I don't know, I really need help.
      Thanks !
  • Advertisement

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!