Jump to content
  • Advertisement
Sign in to follow this  
TheComet

C++ Why are enums broken

Recommended Posts

Posted (edited)
enum class Thing {
    FOO = 0x01, 
    BAR = 0x02
};

Thing thing = Thing::FOO | Thing::BAR; // doesn't compile

This is an age old problem. What is the proper way to achieve what I'm trying to do here? As far as I can tell, using enum class is more a hindrance than a useful tool with flags. I end up typing less with a normal enum:

enum Thing {
    FOO = 0x01, 
    BAR = 0x02
};

unsigned char thing = FOO | BAR;

 

Edited by TheComet

Share this post


Link to post
Share on other sites
Advertisement

This is the right behavior for an enum class. Normal enums are integers and can be used in the same way as integers, but this can cause problems. Imagine you have an enum that holds read/write flags for file I/O. With regular enums you can do something like READ + 5, but what does that mean? How can you add 5 to something that represents the concept of opening a file for reading?

Enum classes get around this issue by disallowing most operators by default. You have to overload the right operators for your use cases. For your case you need to overload operator|.

Share this post


Link to post
Share on other sites

You could also investigate using std::bitset to represent flags instead of manually or/anding the bits. You can still use an enum for this, but then each enum value would just be a name for a bit.

Share this post


Link to post
Share on other sites
Posted (edited)

enum classes enforce that you cannot construct new values from them, unless you cast. The primary reason is to make it explicitly visible in the source code that you're using enum names as integer values rather than as a symbolic name (where the value is not very relevant). In other words, it eliminates the gap of using enum values as hidden constants.

C++ being C++, it's of course not impossible, you can add casts, and hide such things in an overloaded operator.

The point is however that you should consider whether your enum class is really an enum class, or that a set of (integer) constants would be more fitting.

Edited by Alberth

Share this post


Link to post
Share on other sites

I would not use an enum at all here, class or otherwise.  The quick and dirty way to do this is to just use constants:

namespace Thing {
  constexpr uint8_t FOO = 0x01;
  constexpr uint8_t BAR = 0x02;
}

The fancy way is to define a full (non-enum) class that implements operator |, operator &, and ideally an operator <<(std::ostream&, Thing) that provides a human-readable representation (e.g. "FOO|BAR" instead of "3").

Share this post


Link to post
Share on other sites
13 hours ago, a light breeze said:

I would not use an enum at all here, class or otherwise.  The quick and dirty way to do this is to just use constants:


namespace Thing {
  constexpr uint8_t FOO = 0x01;
  constexpr uint8_t BAR = 0x02;
}

The fancy way is to define a full (non-enum) class that implements operator |, operator &, and ideally an operator <<(std::ostream&, Thing) that provides a human-readable representation (e.g. "FOO|BAR" instead of "3").

The problem with this approach is that it doesn't create a type or type alias that you can use to cue in what values are actually expected for a given parameter or variable. If I have a function, I can say that the type of one argument is Thing and then i know that Thing::FOO and Thing::BAR are valid options. Can't do that if Thing is a namespace.

I get around this with some magic macros that create a struct named Thing with an int cast, and create the enum values inside that struct. 

Share this post


Link to post
Share on other sites
1 hour ago, Promit said:

The problem with this approach is that it doesn't create a type or type alias that you can use to cue in what values are actually expected for a given parameter or variable. If I have a function, I can say that the type of one argument is Thing and then i know that Thing::FOO and Thing::BAR are valid options. Can't do that if Thing is a namespace.

I get around this with some magic macros that create a struct named Thing with an int cast, and create the enum values inside that struct. 

You could use BOOST_STRONG_TYPEDEF or something similar, but I really wish that strong or opaque typedefs were part of the language.

 

 

Share this post


Link to post
Share on other sites
On 6/9/2018 at 5:51 PM, TheComet said:

As far as I can tell, using enum class is more a hindrance than a useful tool with flags.

That's correct.  The purpose of strongly typed enums was to allow strict enforcement of enumerations. It prevents things like (Blue+5) which may not be a valid enumeration value, or (Walking | Yellow) which may not be a valid combination. You can list all the states in your FSA and be sure you're not getting unexpected values that aren't enumerated at all.

Flag operations are directly contrary to the strong type since they're asking to be treated as bit patterns rather than enumerations. That is, you are not using them like a strongly typed enumeration where you're only dealing with the items on the list, instead you're treating them as a pattern of bits.

 

One pattern that can help keep them within a name is to keep them as weakly typed values inside a namespace:

namespace MyFlags {
  enum MyFlags : int {
    none = 0,
    foo = 1<<0,
    bar = 1<<1,
    baz = 1<<2,
    thing1 = 1<<3,
    thing2 = 1<<4,
    ...
  };
}

 

Alternatively you can use a mix of templates and/or macros to generate the expected operations for your flags.  There are plenty of examples of it online that compile away to constant expressions that are optimized back down to bitfield operations, my first search pulls up four different github projects for it and a bunch of stackoverflow and similar postings.

Just remember that you aren't using the feature the way it was designed.  

If you want bit manipulation then use bit manipulation. If you want a strong enumeration where you're only dealing with the enumerated values, use an enum class. They're different use cases and they have different meanings and different requirements.

Share this post


Link to post
Share on other sites
struct MyBitField {
  unsigned int foo : 1;
  unsigned int bar : 1;
  ...
};

You could also do bit fields. They can tell you exactly your intend. Just another idea.

Share this post


Link to post
Share on other sites
3 hours ago, dragongame said:

You could also do bit fields.

You can do that if you don't care about the specific bits involved.  The language standard says the allocation order for the bits is implementation defined.  You don't know which bits are assigned to which positions so everything needs to be done by name. 

Different ABIs have different bit ordering. If you're using the x64 ABI it is packed like this, and you'll note it can include spaces between items. Other platform ABIs have different packing requirements, and it looks like GCC supports six variants depending on the target platform.

 

True they are still bit flags, but beware they may not be the human-intuitive values that other programmers expect.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Similar Content

    • By Andrew Parkes
      I am a talented 2D/3D artist with 3 years animation working experience and a Degree in Illustration and Animation. I have won a world-wide art competition hosted by SFX magazine and am looking to develop a survival game. I have some knowledge of C sharp and have notes for a survival based game with flexible storyline and PVP. Looking for developers to team up with. I can create models, animations and artwork and I have beginner knowledge of C sharp with Unity. The idea is Inventory menu based gameplay and is inspired by games like DAYZ.
      Here is some early sci-fi concept art to give you an idea of the work level. Hope to work with like minded people and create something special. email me andrewparkesanim@gmail.com.
      Developers who share the same passion please contact me, or if you have a similar project and want me to join your team email me. 
      Many thanks, Andrew.

    • By mike44
      Hi
      saw in dependency walker that my app still needs msvcp140d.dll even after disabling debug.
      What did I forget in the VS2017 release settings? After setting to multithreaded dll I get linker errors.
      Thanks
       
    • By 3dmodelerguy
      So I have been playing around with yaml-cpp as I want to use YAML for most of my game data files however I am running into some pretty big performance issues and not sure if it is something I am doing or the library itself.
      I created this code in order to test a moderately sized file:
      Player newPlayer = Player(); newPlayer.name = "new player"; newPlayer.maximumHealth = 1000; newPlayer.currentHealth = 1; Inventory newInventory; newInventory.maximumWeight = 10.9f; for (int z = 0; z < 10000; z++) { InventoryItem* newItem = new InventoryItem(); newItem->name = "Stone"; newItem->baseValue = 1; newItem->weight = 0.1f; newInventory.items.push_back(newItem); } YAML::Node newSavedGame; newSavedGame["player"] = newPlayer; newSavedGame["inventory"] = newInventory; This is where I ran into my first issue, memory consumption.
      Before I added this code, the memory usage of my game was about 22MB. After I added everything expect the YAML::Node stuff, it went up to 23MB, so far nothing unexpected. Then when I added the YAML::Node and added data to it, the memory went up to 108MB. I am not sure why when I add the class instance it only adds like 1MB of memory but then copying that data to a YAML:Node instance, it take another 85MB of memory.
      So putting that issue aside, I want want to test the performance of writing out the files. the initial attempt looked like this:
      void YamlUtility::saveAsFile(YAML::Node node, std::string filePath) { std::ofstream myfile; myfile.open(filePath); myfile << node << std::endl; myfile.close(); } To write out the file (that ends up to be about 570KB), it took about 8 seconds to do that. That seems really slow to me.
      After read the documentation a little more I decide to try a different route using the YAML::Emitter, the implemntation looked like this:
      static void buildYamlManually(std::ofstream& file, YAML::Node node) { YAML::Emitter out; out << YAML::BeginMap << YAML::Key << "player" << YAML::Value << YAML::BeginMap << YAML::Key << "name" << YAML::Value << node["player"]["name"].as<std::string>() << YAML::Key << "maximumHealth" << YAML::Value << node["player"]["maximumHealth"].as<int>() << YAML::Key << "currentHealth" << YAML::Value << node["player"]["currentHealth"].as<int>() << YAML::EndMap; out << YAML::BeginSeq; std::vector<InventoryItem*> items = node["inventory"]["items"].as<std::vector<InventoryItem*>>(); for (InventoryItem* const value : items) { out << YAML::BeginMap << YAML::Key << "name" << YAML::Value << value->name << YAML::Key << "baseValue" << YAML::Value << value->baseValue << YAML::Key << "weight" << YAML::Value << value->weight << YAML::EndMap; } out << YAML::EndSeq; out << YAML::EndMap; file << out.c_str() << std::endl; } While this did seem to improve the speed, it was still take about 7 seconds instead of 8 seconds.
      Since it has been a while since I used C++ and was not sure if this was normal, I decided to for testing just write a simple method to manually generate the YAMLin this use case, that looked something like this:
      static void buildYamlManually(std::ofstream& file, SavedGame savedGame) { file << "player: \n" << " name: " << savedGame.player.name << "\n maximumHealth: " << savedGame.player.maximumHealth << "\n currentHealth: " << savedGame.player.currentHealth << "\ninventory:" << "\n maximumWeight: " << savedGame.inventory.maximumWeight << "\n items:"; for (InventoryItem* const value : savedGame.inventory.items) { file << "\n - name: " << value->name << "\n baseValue: " << value->baseValue << "\n weight: " << value->weight; } } This wrote the same file and it took about 0.15 seconds which seemed a lot more to what I was expecting.
      While I would expect some overhead in using yaml-cpp to manage and write out YAML files, it consuming 70X+ the amount of memory and it being 40X+ slower in writing files seems really bad.
      I am not sure if I am doing something wrong with how I am using yaml-cpp that would be causing this issue or maybe it was never design to handle large files but was just wondering if anyone has any insight on what might be happening here (or an alternative to dealing with YAMLin C++)?
    • By 3dmodelerguy
      So I am trying to using Yaml as my game data files (mainly because it support comments, is a bit easier to read than JSON, and I am going to be working in these files a lot) with C++ and yaml-cpp (https://github.com/jbeder/yaml-cpp) seems like the most popular library for dealing with it however I am running into an issue when using pointers.
      Here is my code:
      struct InventoryItem { std::string name; int baseValue; float weight; }; struct Inventory { float maximumWeight; std::vector<InventoryItem*> items; }; namespace YAML { template <> struct convert<InventoryItem*> { static Node encode(const InventoryItem* inventoryItem) { Node node; node["name"] = inventoryItem->name; node["baseValue"] = inventoryItem->baseValue; node["weight"] = inventoryItem->weight; return node; } static bool decode(const Node& node, InventoryItem* inventoryItem) { // @todo validation inventoryItem->name = node["name"].as<std::string>(); inventoryItem->baseValue = node["baseValue"].as<int>(); inventoryItem->weight = node["weight"].as<float>(); return true; } }; template <> struct convert<Inventory> { static Node encode(const Inventory& inventory) { Node node; node["maximumWeight"] = inventory.maximumWeight; node["items"] = inventory.items; return node; } static bool decode(const Node& node, Inventory& inventory) { // @todo validation inventory.maximumWeight = node["maximumWeight"].as<float>(); inventory.items = node["items"].as<std::vector<InventoryItem*>>(); return true; } }; } if I just did `std::vector<InventoryItem> items` and had the encode / decode use `InventoryItem& inventoryItem` everything works fine however when I use the code above that has it as a pointer, I get the following error from code that is part of the yaml-cpp library:
      impl.h(123): error C4700: uninitialized local variable 't' used The code with the error is:
      template <typename T> struct as_if<T, void> { explicit as_if(const Node& node_) : node(node_) {} const Node& node; T operator()() const { if (!node.m_pNode) throw TypedBadConversion<T>(node.Mark()); T t; if (convert<T>::decode(node, t)) // NOTE: THIS IS THE LINE THE COMPILER ERROR IS REFERENCING return t; throw TypedBadConversion<T>(node.Mark()); } }; With my relative lack of experience in C++ and not being able to find any documentation for yaml-cpp using pointers, I am not exactly sure what is wrong with my code.
      Anyone have any ideas what I need to change with my code? 
    • By Gnollrunner
      I already asked this question on stack overflow, and they got pissed at me, down-voted me and so forth, LOL .... so I'm pretty sure the answer is NO, but I'll try again here anyway just in case..... Is there any way to get the size of a polymorphic object at run-time? I know you can create a virtual function that returns size and overload it for each child class, but I'm trying to avoid that since (a) it takes a virtual function call and I want it to be fast and (b) it's a pain to have to include the size function for every subclass. I figure since each object has a v-table their should be some way since the information is there, but perhaps there is no portable way to do it.
    • By MarcusAseth
      This is the code I have:
       //Create Window     DWORD windowStyle = WS_VISIBLE;     DWORD windowExStyle = WS_EX_OVERLAPPEDWINDOW;     SetThreadDpiAwarenessContext(DPI_AWARENESS_CONTEXT_SYSTEM_AWARE);     RECT client{ 0, 0, 100, 40 };     UINT dpi = GetDpiForSystem();     AdjustWindowRectExForDpi(&client, windowStyle, false, windowExStyle, dpi);     UINT adjustedWidth = client.right - client.left;     UINT adjustedHeight = client.bottom - client.top;     m_hwnd = CreateWindowEx(windowExStyle,                             className.c_str(),                             windowName.c_str(),                             windowStyle,                             CW_USEDEFAULT,                             CW_USEDEFAULT,                             adjustedWidth,                             adjustedHeight,                             nullptr,                             nullptr,                             m_hInstance,                             m_emu     ); The generated window has a client area of 1 pixel in height, even though I'm asking for 40. so I'm always getting 39 pixel less than what I need...can someone help me with this? x_x
    • By SeraphLance
      I've spent quite a while (and probably far longer than I actually should) trying to design an allocator system.  I've bounced ideas around to various people in the past, but never really gotten something satisfactory.
      Basically, the requirements I'm trying to target are:
        Composability -- allocators that seamlessly allocate from memory allocated by other allocators.  This helps me to do things like, for example, write an allocator that pads allocations from its parent allocator with bit patterns to detect heap corruption.  It also allows me to easily create spillovers, or optionally assert on overflow with specialized fallbacks.   Handling the fact that some allocators have different interfaces than others in an elegant way.  For example, a regular allocator might have Allocate/Deallocate, but a linear allocator can't do itemized deallocation (but can deallocate everything at once).   I want to be able to tell how much I've allocated, and how much of that is actually being used.  I also want to be able to bucket that on subsystem, but as far as I can tell, that doesn't really impact the design outside of adding a new parameter to allocate calls. Note:  I'm avoiding implementation of allocation buckets and alignment from this, since it's largely orthogonal to what I'm asking and can be done with any of the designs.
       
      To meet those three requirements, I've come up with the following solutions, all of which have significant drawbacks.
      Static Policy-Based Allocators
      I originally built this off of this talk.
      Examples;
      struct AllocBlock { std::byte* ptr; size_t size; }; class Mallocator { size_t allocatedMemory; public: Mallocator(); AllocBlock Allocate(size_t size); void Deallocate(AllocBlock blk); }; template <typename BackingAllocator, size_t allocSize> class LinearAllocator : BackingAllocator { AllocBlock baseMemory; char* ptr; char* end; public: LinearAllocator() : baseMemory(BackingAllocator::Allocate(allocSize)) { /* stuff */ } AllocBlock Allocate(size_t size); }; template <typename BackingAllocator, size_t allocSize> class PoolAllocator : BackingAllocator { AllocBlock baseMemory; char* currentHead; public: PoolAllocator() : baseMemory(BackingAllocator::Allocate(allocSize)) { /* stuff */ } void* Allocate(); // note the different signature. void Deallocate(void*); }; // ex: auto allocator = PoolAllocator<Mallocator, size>; Advantages:
      SFINAE gives me a pseudo-duck-typing thing.  I don't need any kind of common interfaces, and I'll get a compile-time error if I try to do something like create a LinearAllocator backed by a PoolAllocator. It's composable. Disadvantages:
      Composability is type composability, meaning every allocator I create has an independent chain of compositions.  This makes tracking memory usage pretty hard, and presumably can cause me external fragmentation issues.  I might able to get around this with some kind of singleton kung-fu, but I'm unsure as I don't really have any experience with them. Owing to the above, all of my customization points have to be template parameters because the concept relies on empty constructors.  This isn't a huge issue, but it makes defining allocators cumbersome. Dynamic Allocator Dependency
      This is probably just the strategy pattern, but then again everything involving polymorphic type composition looks like the strategy pattern to me. 😃
      Examples:
      struct AllocBlock { std::byte* ptr; size_t size; }; class Allocator { virtual AllocBlock Allocate(size_t) = 0; virtual void Deallocate(AllocBlock) = 0; }; class Mallocator : Allocator { size_t allocatedMemory; public: Mallocator(); AllocBlock Allocate(size_t size); void Deallocate(AllocBlock blk); }; class LinearAllocator { Allocator* backingAllocator; AllocBlock baseMemory; char* ptr; char* end; public: LinearAllocator(Allocator* backingAllocator, size_t allocSize) : backingAllocator(backingAllocator) { baseMemory = backingAllocator->Allocate(allocSize); /* stuff */ } AllocBlock Allocate(size_t size); }; class PoolAllocator { Allocator* backingAllocator; AllocBlock baseMemory; char* currentHead; public: PoolAllocator(Allocator* backingAllocator, size_t allocSize) : backingAllocator(backingAllocator) { baseMemory = backingAllocator->Allocate(allocSize); /* stuff */ } void* Allocate(); // note the different signature. void Deallocate(void*); }; // ex: auto allocator = PoolAllocator(someGlobalMallocator, size); There's an obvious problem with the above:  Namely that PoolAllocator and LinearAllocator don't inherit from the generic Allocator interface.  They can't, because their interfaces provide different semantics.  There's to ways I can solve this:
        Inherit from Allocator anyway and assert on unsupported operations (delegates composition failure to runtime errors, which I'd rather avoid).   As above:  Don't inherit and just deal with the fact that some composability is lost (not ideal, because it means you can't do things like back a pool allocator with a linear allocator) As for the overall structure, I think it looks something like this:
      Advantages:
      Memory usage tracking is easy, since I can use the top-level mallocator(s) to keep track of total memory allocated, and all of the leaf allocators to track of used memory.  How to do that in particular is outside the scope of what I'm asking about, but I've got some ideas. I still have composability Disadvantages:
      The interface issues above.  There's no duck-typing-like mechanism to help here, and I'm strongly of the opinion that programmer errors in construction like that should fail at compile-time, not runtime. Composition on Allocated Memory instead of Allocators
      This is probably going to be somewhat buggy and poorly thought, since it's just an idea rather than something I've actually tried.
      Examples:
      struct AllocBlock { void* ptr; size_t size; std::function<void()> dealloc; } class Mallocator { size_t allocatedMemory; public: Mallocator(); AllocBlock Allocate(size_t size) { void* ptr = malloc(size); return {ptr, size, [ptr](){ free(ptr); }}; } }; class LinearAllocator { AllocBlock baseMemory; char* ptr; char* end; public: LinearAllocator(AllocBlock baseMemory) : baseMemory(baseMemory) {end = ptr = baseMemory.ptr;} AllocBlock Allocate(size_t); }; class PoolAllocator { AllocBlock baseMemory; char* head; public: PoolAllocator(AllocBlock baseMemory) : baseMemory(baseMemory) { /* stuff */ } void* Allocate(); }; // ex: auto allocator = PoolAllocator(someGlobalMallocator.Allocate(size)); I don't really like this design at first blush, but I haven't really tried it.

      Advantages:
      "Composable", since we've delegated most of what composition entails into the memory block rather than the allocator. Tracking memory is a bit more complex, but I *think* it's still doable. Disadvantages:
      Makes the interface more complex, since we have to allocate first and then pass that block into our "child" allocator. Can't do specialized deallocation (i.e. stack deallocation) since the memory blocks don't know anything about their parent allocation pool.  I might be able to get around this though.  
      I've done a lot of research against all of the source-available engines I can find, and it seems like most of them either have very small allocator systems or simply don't try to make them composable at all (CryEngine does this, for example).  That said, it seems like something that should have a lot of good examples, but I can't find a whole lot.  Does anyone have any good feedback/suggestions on this, or is composability in general just a pipe dream?
    • By RobMaddison
      Hi
      I’ve been working on a game engine for years and I’ve recently come back to it after a couple of years break.  Because my engine uses DirectX9.0c I thought maybe it would be a good idea to upgrade it to DX11. I then installed Windows 10 and starting tinkering around with the engine trying to refamiliarise myself with all the code.
      It all seems to work ok in the new OS but there’s something I’ve noticed that has caused a massive slowdown in frame rate. My engine has a relatively sophisticated terrain system which includes the ability to paint roads onto it, ala CryEngine. The roads are spline curves and built up with polygons matching the terrain surface. It used to work perfectly but I’ve noticed that when I’m dynamically adding the roads, which involves moving the spline curve control points around the surface of the terrain, the frame rate comes to a grinding halt.
      There’s some relatively complex processing going on each time the mouse moves - the road either side of the control point(s) being moved, is reconstructed in real time so you can position and bend the road precisely. On my previous OS, which was Win2k Pro, this worked really smoothly and in release mode there was barely any slow down in frame rate, but now it’s unusable. As part of the road reconstruction, I lock the vertex and index buffers and refill them with the new values so my question is, on windows 10 using DX9, is anyone aware of any locking issues? I’m aware that there can be contention when locking buffers dynamically but I’m locking with LOCK_DISCARD and this has never been an issue before.
      Any help would be greatly appreciated.
    • By LukeCassa005
      I'm writing a small 3D Vulkan game engine using C++. I'm working in a team, and the other members really don't know almost anything about C++. About three years ago i found this new programming language called D wich seems very interesting, as it's very similar to C++. My idea was to implement core systems like rendering, math, serialization and so on using C++ and then wrapping all with a D framework, easier to use and less complicated. Is it worth it or I should stick only to C++ ? Does it have less performance compared to a pure c++ application ?
    • By MarcusAseth
      Hi guys, I'm trying to learn this stuff but running into some problems 😕
      I've compiled my .hlsl into a header file which contains the global variable with the precompiled shader data:
      //... // Approximately 83 instruction slots used #endif const BYTE g_vs[] = { 68, 88, 66, 67, 143, 82, 13, 236, 152, 133, 219, 113, 173, 135, 18, 87, 122, 208, 124, 76, 1, 0, 0, 0, 16, 76, 0, 0, 6, 0, //.... And now following the "Compiling at build time to header files" example at this msdn link , I've included the header files in my main.cpp and I'm trying to create the vertex shader like this:
      hr = g_d3dDevice->CreateVertexShader(g_vs, sizeof(g_vs), nullptr, &g_d3dVertexShader); if (FAILED(hr)) { return -1; } and this is failing, entering the if and returing -1.
      Can someone point out what I'm doing wrong? 😕 
  • Advertisement
  • Popular Now

  • Forum Statistics

    • Total Topics
      631354
    • Total Posts
      2999503
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!