• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

AngeredBovine

Members
  • Content count

    3
  • Joined

  • Last visited

Community Reputation

105 Neutral

About AngeredBovine

  • Rank
    Newbie
  1. DX11

    Yes. Thanks for your help.
  2. DX11

    Thank you for the help. I was previously using this vertex shader:   PixelInputType main(VertexInputType input) { PixelInputType output; input.position.w = 1.0f; output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); output.tex = input.tex; return output; }   I followed your advice and removed the multiplication by the world and view matrices. I now use this shader:   PixelInputType main(VertexInputType input) { PixelInputType output; input.position.w = 1.0f; output.position = mul(input.position, projectionMatrix); output.position.z = 0.0f; output.tex = input.tex; return output; }
  3. Hello,   I'm new here so please let me know if there is a way in which I can improve the structure of my posts.   I've been building a framework using DirectX11 for future use in my game creation endeavors. I have been leaning heavily on the tutorials found here http://www.rastertek.com/tutdx11.html due to my lack of experience with DirectX. I have managed to render a 3d model and explore my space with the camera. I have run into problems rendering a 2d image to the screen as described in this tutorial http://www.rastertek.com/dx11tut11.html. It renders the texture to my window, but the texture changes when the camera is moved. It disappears from view sometimes, and if it is visible it acts as if it is a normal 3d model in the form of a plane. I have gone through my code multiple times but I cannot seem to find my error. Any insight would be much appreciated.   #include "GraphicsClass.h" GraphicsClass::GraphicsClass() { m_d3d = 0; m_camera = 0; } GraphicsClass::GraphicsClass(const GraphicsClass& other) { } GraphicsClass::~GraphicsClass() { } bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd) { bool result; m_screenWidth = screenWidth; m_screenHeight = screenHeight; m_d3d = new D3DClass(); if(!m_d3d) { return false; } result = m_d3d->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR); if(!result) { MessageBox(hwnd, (LPCSTR)L"Could not initialize D3D.", (LPCSTR)L"Error", MB_OK); return false; } m_camera = new Camera; if(!m_camera) { return false; } m_camera->SetPosition(0.0f, 0.0f, -10.f); return true; } void GraphicsClass::Shutdown() { if(m_d3d) { m_d3d->Shutdown(); delete m_d3d; m_d3d = 0; } if(m_camera) { delete m_camera; m_camera = 0; } return; } bool GraphicsClass::Frame(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader) { bool result; result = Render(model, numModels, texture, numTextures, shader); if(!result) { return false; } return true; } bool GraphicsClass::Render(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader) { D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix; bool result; m_d3d->BeginScene(0.0f, 0.0f, 0.0f, 1.0f); m_camera->Render(); m_camera->GetViewMatrix(viewMatrix); m_d3d->GetWorldMatrix(worldMatrix); m_d3d->GetProjectionMatrix(projectionMatrix); m_d3d->GetOrthoMatrix(orthoMatrix); m_d3d->TurnZBufferOn(); for(int i = 0; i < numModels; i++) { if(!model[i]) { return false; } model[i]->Render(m_d3d->GetDeviceContext()); D3DXVECTOR3 rot = m_camera->GetRotation(); D3DXMATRIX rotMat; D3DXMatrixRotationYawPitchRoll(&rotMat, rot.y, rot.x, rot.z); result = shader->Render(m_d3d->GetDeviceContext(), model[i]->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, model[i]->GetTexture()); if(!result) { return false; } } m_d3d->TurnZBufferOff(); for(int k = 0; k < numTextures; k++) { if(!texture[k]) { return false; } m_d3d->TurnZBufferOff(); result = texture[k]->Render(m_d3d->GetDeviceContext(), texture[k]->X, texture[k]->Y); if(!result) { return false; } result = shader->Render(m_d3d->GetDeviceContext(), texture[k]->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, texture[k]->GetTexture()); if(!result) { return false; } } m_d3d->EndScene(); return true; } Camera* GraphicsClass::GetCamera() { return m_camera; } void GraphicsClass::SetCamera(Camera* cam) { m_camera = cam; return; } ID3D11Device* GraphicsClass::GetDevice() { return m_d3d->GetDevice(); } int GraphicsClass::GetScreenWidth() { return m_screenWidth; } int GraphicsClass::GetScreenHeight() { return m_screenHeight; } #include "D3DClass.h" D3DClass::D3DClass() { m_swapChain = 0; m_device = 0; m_deviceContext = 0; m_depthStencilBuffer = 0; m_depthStencilState = 0; m_depthStencilView = 0; m_disabledStencilState = 0; m_rasterState = 0; } D3DClass::D3DClass(const D3DClass&) { } D3DClass::~D3DClass() { } bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hwnd, bool fullScreen, float screenDepth, float screenNear) { HRESULT result; IDXGIFactory* factory; IDXGIAdapter* adapter; IDXGIOutput* adapterOutput; unsigned int numModes, i, numerator, denominator, stringLength; DXGI_MODE_DESC* displayModeList; DXGI_ADAPTER_DESC adapterDesc; int error; DXGI_SWAP_CHAIN_DESC swapChainDesc; D3D_FEATURE_LEVEL featureLevel; ID3D11Texture2D* backBufferPtr; D3D11_TEXTURE2D_DESC depthBufferDesc; D3D11_DEPTH_STENCIL_DESC depthStencilDesc; D3D11_DEPTH_STENCIL_DESC depthDisabledStencilDesc; D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc; D3D11_RASTERIZER_DESC rasterDesc; D3D11_VIEWPORT viewport; float fieldOfView, screenAspect; m_vsyncEnabled = vsync; result = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory); if(FAILED(result)) { return false; } result = factory->EnumAdapters(0, &adapter); if(FAILED(result)) { return false; } result = adapter->EnumOutputs(0, &adapterOutput); if(FAILED(result)) { return false; } result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL); if(FAILED(result)) { return false; } // Create a list to hold all the possible display modes for this monitor/video card combination. displayModeList = new DXGI_MODE_DESC[numModes]; if(!displayModeList) { return false; } // Now fill the display mode list structures. result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList); if(FAILED(result)) { return false; } // Now go through all the display modes and find the one that matches the screen width and height. // When a match is found store the numerator and denominator of the refresh rate for that monitor. for(i=0; i<numModes; i++) { if(displayModeList[i].Width == (unsigned int)screenWidth) { if(displayModeList[i].Height == (unsigned int)screenHeight) { numerator = displayModeList[i].RefreshRate.Numerator; denominator = displayModeList[i].RefreshRate.Denominator; } } } // Get the adapter (video card) description. result = adapter->GetDesc(&adapterDesc); if(FAILED(result)) { return false; } // Store the dedicated video card memory in megabytes. m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024); // Convert the name of the video card to a character array and store it. error = wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128); if(error != 0) { return false; } // Release the display mode list. delete [] displayModeList; displayModeList = 0; // Release the adapter output. adapterOutput->Release(); adapterOutput = 0; // Release the adapter. adapter->Release(); adapter = 0; // Release the factory. factory->Release(); factory = 0; // Initialize the swap chain description. ZeroMemory(&swapChainDesc, sizeof(swapChainDesc)); // Set to a single back buffer. swapChainDesc.BufferCount = 1; // Set the width and height of the back buffer. swapChainDesc.BufferDesc.Width = screenWidth; swapChainDesc.BufferDesc.Height = screenHeight; // Set regular 32-bit surface for the back buffer. swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Set the refresh rate of the back buffer. if(m_vsyncEnabled) { swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator; swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator; } else { swapChainDesc.BufferDesc.RefreshRate.Numerator = 0; swapChainDesc.BufferDesc.RefreshRate.Denominator = 1; } // Set the usage of the back buffer. swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // Set the handle for the window to render to. swapChainDesc.OutputWindow = hwnd; // Turn multisampling off. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Set to full screen or windowed mode. if(fullScreen) { swapChainDesc.Windowed = false; } else { swapChainDesc.Windowed = true; } // Set the scan line ordering and scaling to unspecified. swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; // Discard the back buffer contents after presenting. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // Don't set the advanced flags. swapChainDesc.Flags = 0; // Set the feature level to DirectX 11. featureLevel = D3D_FEATURE_LEVEL_11_0; // Create the swap chain, Direct3D device, and Direct3D device context. result = D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, &featureLevel, 1, D3D11_SDK_VERSION, &swapChainDesc, &m_swapChain, &m_device, NULL, &m_deviceContext); if(FAILED(result)) { return false; } // Get the pointer to the back buffer. result = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&backBufferPtr); if(FAILED(result)) { return false; } // Create the render target view with the back buffer pointer. result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView); if(FAILED(result)) { return false; } // Release pointer to the back buffer as we no longer need it. backBufferPtr->Release(); backBufferPtr = 0; // Initialize the description of the depth buffer. ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc)); // Set up the description of the depth buffer. depthBufferDesc.Width = screenWidth; depthBufferDesc.Height = screenHeight; depthBufferDesc.MipLevels = 1; depthBufferDesc.ArraySize = 1; depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthBufferDesc.SampleDesc.Count = 1; depthBufferDesc.SampleDesc.Quality = 0; depthBufferDesc.Usage = D3D11_USAGE_DEFAULT; depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthBufferDesc.CPUAccessFlags = 0; depthBufferDesc.MiscFlags = 0; result = m_device->CreateTexture2D(&depthBufferDesc, NULL, &m_depthStencilBuffer); if(FAILED(result)) { return false; } // Initialize the description of the stencil state. ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc)); // Set up the description of the stencil state. depthStencilDesc.DepthEnable = true; depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS; depthStencilDesc.StencilEnable = true; depthStencilDesc.StencilReadMask = 0xFF; depthStencilDesc.StencilWriteMask = 0xFF; // Stencil operations if pixel is front-facing. depthStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR; depthStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS; // Stencil operations if pixel is back-facing. depthStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR; depthStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS; // Create the depth stencil state. result = m_device->CreateDepthStencilState(&depthStencilDesc, &m_depthStencilState); if(FAILED(result)) { return false; } ZeroMemory(&depthDisabledStencilDesc, sizeof(depthDisabledStencilDesc)); // Now create a second depth stencil state which turns off the Z buffer for 2D rendering. The only difference is // that DepthEnable is set to false, all other parameters are the same as the other depth stencil state. depthDisabledStencilDesc.DepthEnable = false; depthDisabledStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; depthDisabledStencilDesc.DepthFunc = D3D11_COMPARISON_LESS; depthDisabledStencilDesc.StencilEnable = true; depthDisabledStencilDesc.StencilReadMask = 0xFF; depthDisabledStencilDesc.StencilWriteMask = 0xFF; depthDisabledStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthDisabledStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR; depthDisabledStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthDisabledStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS; depthDisabledStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthDisabledStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR; depthDisabledStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthDisabledStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS; result = m_device->CreateDepthStencilState(&depthDisabledStencilDesc, &m_disabledStencilState); if(FAILED(result)) { return false; } // Set the depth stencil state. m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1); // Initailze the depth stencil view. ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc)); // Set up the depth stencil view description. depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; depthStencilViewDesc.Texture2D.MipSlice = 0; // Create the depth stencil view. result = m_device->CreateDepthStencilView(m_depthStencilBuffer, &depthStencilViewDesc, &m_depthStencilView); if(FAILED(result)) { return false; } // Bind the render target view and depth stencil buffer to the output render pipeline. m_deviceContext->OMSetRenderTargets(1, &m_renderTargetView, m_depthStencilView); // Setup the raster description which will determine how and what polygons will be drawn. rasterDesc.AntialiasedLineEnable = false; rasterDesc.CullMode = D3D11_CULL_BACK; rasterDesc.DepthBias = 0; rasterDesc.DepthBiasClamp = 0.0f; rasterDesc.DepthClipEnable = true; rasterDesc.FillMode = D3D11_FILL_SOLID; rasterDesc.FrontCounterClockwise = false; rasterDesc.MultisampleEnable = false; rasterDesc.ScissorEnable = false; rasterDesc.SlopeScaledDepthBias = 0.0f; // Create the rasterizer state from the description we just filled out. result = m_device->CreateRasterizerState(&rasterDesc, &m_rasterState); if(FAILED(result)) { return false; } // Now set the rasterizer state. m_deviceContext->RSSetState(m_rasterState); // Setup the viewport for rendering. viewport.Width = (float)screenWidth; viewport.Height = (float)screenHeight; viewport.MinDepth = 0.0f; viewport.MaxDepth = 1.0f; viewport.TopLeftX = 0.0f; viewport.TopLeftY = 0.0f; // Create the viewport. m_deviceContext->RSSetViewports(1, &viewport); // Setup the projection matrix. fieldOfView = (float)D3DX_PI / 4.0f; screenAspect = (float)screenWidth / (float)screenHeight; // Create the projection matrix for 3D rendering. D3DXMatrixPerspectiveFovLH(&m_projectionMatrix, fieldOfView, screenAspect, screenNear, screenDepth); // Initialize the world matrix to the identity matrix. D3DXMatrixIdentity(&m_worldMatrix); // Create an orthographic projection matrix for 2D rendering. D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth); return true; } void D3DClass::Shutdown() { if(m_swapChain) { m_swapChain->SetFullscreenState(false, NULL); } if(m_rasterState) { m_rasterState->Release(); m_rasterState = 0; } if(m_depthStencilView) { m_depthStencilView->Release(); m_depthStencilView = 0; } if(m_depthStencilState) { m_depthStencilState->Release(); m_depthStencilState = 0; } if(m_disabledStencilState) { m_disabledStencilState->Release(); m_disabledStencilState = 0; } if(m_depthStencilBuffer) { m_depthStencilBuffer->Release(); m_depthStencilBuffer = 0; } if(m_renderTargetView) { m_renderTargetView->Release(); m_renderTargetView = 0; } if(m_deviceContext) { m_deviceContext->Release(); m_deviceContext = 0; } if(m_device) { m_device->Release(); m_device = 0; } if(m_swapChain) { m_swapChain->Release(); m_swapChain = 0; } return; } void D3DClass::BeginScene(float R, float G, float B, float A) { float color[4]; color[0] = R; color[1] = G; color[2] = B; color[3] = A; m_deviceContext->ClearRenderTargetView(m_renderTargetView, color); m_deviceContext->ClearDepthStencilView(m_depthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0); return; } void D3DClass::EndScene() { if(m_vsyncEnabled) { m_swapChain->Present(1, 0); } else { m_swapChain->Present(0, 0); } return; } ID3D11Device* D3DClass::GetDevice() { return m_device; } ID3D11DeviceContext* D3DClass::GetDeviceContext() { return m_deviceContext; } void D3DClass::GetProjectionMatrix(D3DXMATRIX& projectionMatrix) { projectionMatrix = m_projectionMatrix; return; } void D3DClass::GetWorldMatrix(D3DXMATRIX& worldMatrix) { worldMatrix = m_worldMatrix; return; } void D3DClass::GetOrthoMatrix(D3DXMATRIX& orthoMatrix) { orthoMatrix = m_orthoMatrix; return; } void D3DClass::GetVideoCardInfo(char* cardName, int& memory) { strcpy_s(cardName, 128, m_videoCardDescription); memory = m_videoCardMemory; return; } void D3DClass::TurnZBufferOff() { m_deviceContext->OMSetDepthStencilState(m_disabledStencilState, 1); return; } void D3DClass::TurnZBufferOn() { m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1); return; } #include "Texture2D.h" Texture2D::Texture2D() { m_vertexBuffer = 0; m_indexBuffer = 0; m_texture = 0; } Texture2D::Texture2D(const Texture2D&) { } Texture2D::~Texture2D() { } bool Texture2D::Initialize(ID3D11Device* device, int screenWidth, int screenHeight, WCHAR* texturefilename, int textureWidth, int textureHeight) { bool result; m_screenWidth = screenWidth; m_screenheight = screenHeight; m_imageWidth = textureWidth; m_imageHeight = textureHeight; m_previousXPos = -1; m_previousYPos = -1; result = InitializeBuffers(device); if(!result) { return false; } result = LoadTexture(device, texturefilename); if(!result) { return false; } return true; } void Texture2D::Shutdown() { ReleaseTexture(); ShutdownBuffers(); return; } bool Texture2D::Render(ID3D11DeviceContext* deviceContext, int positionX, int positionY) { bool result; result = UpdateBuffers(deviceContext, positionX, positionY); if(!result) { return false; } RenderBuffers(deviceContext); return true; } int Texture2D::GetIndexCount() { return m_indexCount; } ID3D11ShaderResourceView* Texture2D::GetTexture() { return m_texture->GetTexture(); } bool Texture2D::InitializeBuffers(ID3D11Device* device) { Vertex* vertices; unsigned long* indices; D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc; D3D11_SUBRESOURCE_DATA vertexData, indexData; HRESULT result; m_vertexCount = 6; m_indexCount = m_vertexCount; vertices = new Vertex[m_vertexCount]; if(!vertices) { return false; } indices = new unsigned long[m_indexCount]; if(!indices) { return false; } memset(vertices, 0, sizeof(Vertex) * m_vertexCount); for(int i = 0; i < m_indexCount; i++) { indices[i] = i; } vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC; vertexBufferDesc.ByteWidth = sizeof(Vertex) * m_vertexCount; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; vertexBufferDesc.MiscFlags = 0; vertexBufferDesc.StructureByteStride = 0; vertexData.pSysMem = vertices; vertexData.SysMemPitch = 0; vertexData.SysMemSlicePitch = 0; result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer); if(FAILED(result)) { return false; } indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; indexBufferDesc.StructureByteStride = 0; indexData.pSysMem = indices; indexData.SysMemPitch = 0; indexData.SysMemSlicePitch = 0; result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer); if(FAILED(result)) { return false; } delete[] vertices; vertices = 0; delete[] indices; indices = 0; return true; } void Texture2D::ShutdownBuffers() { if(m_vertexBuffer) { m_vertexBuffer->Release(); m_vertexBuffer = 0; } if(m_indexBuffer) { m_indexBuffer->Release(); m_indexBuffer = 0; } return; } bool Texture2D::UpdateBuffers(ID3D11DeviceContext* deviceContext, int XPosition, int YPosition) { float left, right, top, bottom; Vertex* vertices; D3D11_MAPPED_SUBRESOURCE mappedResource; Vertex* verticesPtr; HRESULT result; if(XPosition == m_previousXPos && YPosition == m_previousYPos) { return true; } m_previousXPos = XPosition; m_previousYPos = YPosition; left = (float)((m_screenWidth / 2) * -1) + (float)XPosition; right = left + m_imageWidth; top = (float)((m_screenheight / 2)) - (float)YPosition; bottom = top - (float)m_imageHeight; vertices = new Vertex[m_vertexCount]; if(!vertices) { return false; } vertices[0].position = D3DXVECTOR3(left, top, 0.0f); vertices[0].texture = D3DXVECTOR2(0.0f, 0.0f); vertices[1].position = D3DXVECTOR3(right, bottom, 0.0f); vertices[1].texture = D3DXVECTOR2(1.0f, 1.0f); vertices[2].position = D3DXVECTOR3(left, bottom, 0.0f); vertices[2].texture = D3DXVECTOR2(0.0f, 1.0f); vertices[3].position = D3DXVECTOR3(left, top, 0.0f); vertices[3].texture = D3DXVECTOR2(0.0f, 0.0f); vertices[4].position = D3DXVECTOR3(right, top, 0.0f); vertices[4].texture = D3DXVECTOR2(1.0f, 0.0f); vertices[5].position = D3DXVECTOR3(right, bottom, 0.0f); vertices[5].texture = D3DXVECTOR2(1.0f, 1.0f); result = deviceContext->Map(m_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); if(FAILED(result)) { return false; } verticesPtr = (Vertex*)mappedResource.pData; memcpy(verticesPtr, (void*)vertices, (sizeof(Vertex) * m_vertexCount)); deviceContext->Unmap(m_vertexBuffer, 0); delete [] vertices; vertices = 0; return true; } void Texture2D::RenderBuffers(ID3D11DeviceContext* deviceContext) { unsigned int stride; unsigned int offset; stride = sizeof(Vertex); offset = 0; deviceContext->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset); deviceContext->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0); deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); return; } bool Texture2D::LoadTexture(ID3D11Device* device, WCHAR* filename) { bool result; m_texture = new Texture(); if(!m_texture) { return false; } result = m_texture->Initialize(device, filename); if(!result) { return false; } return true; } void Texture2D::ReleaseTexture() { if(m_texture) { m_texture->Shutdown(); delete m_texture; m_texture = 0; } return; }