redpirate

Members
  • Content count

    1
  • Joined

  • Last visited

Community Reputation

249 Neutral

About redpirate

  • Rank
    Newbie
  1. I am on the verge of finally making 2D terrain generation using simplex noise and I have all most of the code down except the world generates too randomly and has random floating islands. I want it to look like terraria and it is looking more like a top-down game. Here is the code for what I have so far:     package main; import org.newdawn.slick.AppGameContainer; import org.newdawn.slick.BasicGame; import org.newdawn.slick.Color; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.geom.Rectangle; public class Game extends BasicGame {     Rectangle[][] world = new Rectangle[15][15];     float[][] noise = new float[15][15];     public Game(String title)     {         super(title);     }     @Override     public void init(GameContainer gc) throws SlickException     {         Noise.seed();         float frequency = 1.0f / (float) world.length;         for (int x = 0; x < world.length; x++)         {             for (int y = 0; y < world[0].length; y++)             {                 noise[x][y] = Noise.Generate((float) x * frequency, (float) y * frequency);             }         }         for (int x = 0; x < 15; x++)         {             for (int y = 0; y < 15; y++)             {                 if (noise[x][y] < 0f)                     world[x][y] = null;                 if (noise[x][y] >= -0f) {                     world[x][y] = new Rectangle(x * 32, y * 32, 32, 32);                 }             }         }     }     @Override     public void render(GameContainer gc, Graphics g) throws SlickException     {            for (int x = 0; x < world.length; x++)         {             for (int y = 0; y < world[0].length; y++)             {                 if (world[x][y] != null)                     g.drawRect(world[x][y].getX(), world[x][y].getY(), world[x][y].getWidth(), world[x][y].getHeight());             }         }     }     @Override     public void update(GameContainer gc, int ticks) throws SlickException     {         // Nothing to update     }     public static void main(String[] args)     {         try         {             AppGameContainer game = new AppGameContainer(new Game("World Generator"));             game.setDisplayMode(1280, 720, false);             game.setTargetFrameRate(60);             game.setAlwaysRender(true);             game.start();         }         catch (SlickException e)         {             e.printStackTrace();         }     } } package main; import java.util.Random; public class Noise {     private static int[] perm = new int[] { 151, 160, 137, 91, 90, 15,         131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69,         142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0,         26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,         237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165,         71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,         60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102,         143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208,         89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,         198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147,         118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182,         189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163,         70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98,         108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,         251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51,         145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,         184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236,         205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215,         61, 156, 180, 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53,         194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21,         10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252,         219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174,         20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27,         166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220,         105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,         1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135,         130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52,         217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85,         212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183,         170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,         167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224,         232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238,         210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239,         107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115,         121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29,         24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 };     public static void seed()     {         Random rand = new Random();         for (int iter = 0; iter < perm.length; iter++)         {             perm[iter] = rand.nextInt(256);         }     }     // / <summary>     // / 1D simplex noise     // / </summary>     // / <param name="x"></param>     // / <returns></returns>     public static float Generate(float x) {         int i0 = FastFloor(x);         int i1 = i0 + 1;         float x0 = x - i0;         float x1 = x0 - 1.0f;         float n0, n1;         float t0 = 1.0f - x0 * x0;         t0 *= t0;         n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);         float t1 = 1.0f - x1 * x1;         t1 *= t1;         n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);         // The maximum value of this noise is 8*(3/4)^4 = 2.53125         // A factor of 0.395 scales to fit exactly within [-1,1]         return 0.395f * (n0 + n1);     }     // / <summary>     // / 2D simplex noise     // / </summary>     // / <param name="x"></param>     // / <param name="y"></param>     // / <returns></returns>     public static float Generate(float x, float y)     {         final float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)         final float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0         float n0, n1, n2; // Noise contributions from the three corners         // Skew the input space to determine which simplex cell we're in         float s = (x + y) * F2; // Hairy factor for 2D         float xs = x + s;         float ys = y + s;         int i = FastFloor(xs);         int j = FastFloor(ys);         float t = (float)(i + j) * G2;         float X0 = i - t; // Unskew the cell origin back to (x,y) space         float Y0 = j - t;         float x0 = x - X0; // The x,y distances from the cell origin         float y0 = y - Y0;         // For the 2D case, the simplex shape is an equilateral triangle.         // Determine which simplex we are in.         int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords         if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)         else { i1 = 0; j1 = 1; }      // upper triangle, YX order: (0,0)->(0,1)->(1,1)         // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and         // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where         // c = (3-sqrt(3))/6         float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords         float y1 = y0 - j1 + G2;         float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords         float y2 = y0 - 1.0f + 2.0f * G2;         // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds         int ii = i % 256;         int jj = j % 256;         // Calculate the contribution from the three corners         float t0 = 0.5f - x0 * x0 - y0 * y0;         if (t0 < 0.0f) n0 = 0.0f;         else         {             t0 *= t0;             n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);         }         float t1 = 0.5f - x1 * x1 - y1 * y1;         if (t1 < 0.0f) n1 = 0.0f;         else         {             t1 *= t1;             n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);         }         float t2 = 0.5f - x2 * x2 - y2 * y2;         if (t2 < 0.0f) n2 = 0.0f;         else         {             t2 *= t2;             n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);         }         // Add contributions from each corner to get the final noise value.         // The result is scaled to return values in the interval [-1,1].         return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!     }     public static float Generate(float x, float y, float z)     {         // Simple skewing factors for the 3D case         final float F3 = 0.333333333f;         final float G3 = 0.166666667f;         float n0, n1, n2, n3; // Noise contributions from the four corners         // Skew the input space to determine which simplex cell we're in         float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D         float xs = x + s;         float ys = y + s;         float zs = z + s;         int i = FastFloor(xs);         int j = FastFloor(ys);         int k = FastFloor(zs);         float t = (float)(i + j + k) * G3;         float X0 = i - t; // Unskew the cell origin back to (x,y,z) space         float Y0 = j - t;         float Z0 = k - t;         float x0 = x - X0; // The x,y,z distances from the cell origin         float y0 = y - Y0;         float z0 = z - Z0;         // For the 3D case, the simplex shape is a slightly irregular tetrahedron.         // Determine which simplex we are in.         int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords         int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords         /* This code would benefit from a backport from the GLSL version! */         if (x0 >= y0)         {             if (y0 >= z0)             { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order             else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order             else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order         }         else         { // x0<y0             if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order             else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order             else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order         }         // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),         // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and         // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where         // c = 1/6.         float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords         float y1 = y0 - j1 + G3;         float z1 = z0 - k1 + G3;         float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords         float y2 = y0 - j2 + 2.0f * G3;         float z2 = z0 - k2 + 2.0f * G3;         float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords         float y3 = y0 - 1.0f + 3.0f * G3;         float z3 = z0 - 1.0f + 3.0f * G3;         // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds         int ii = i % 256;         int jj = j % 256;         int kk = k % 256;         // Calculate the contribution from the four corners         float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;         if (t0 < 0.0f) n0 = 0.0f;         else         {             t0 *= t0;             n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);         }         float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;         if (t1 < 0.0f) n1 = 0.0f;         else         {             t1 *= t1;             n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);         }         float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;         if (t2 < 0.0f) n2 = 0.0f;         else         {             t2 *= t2;             n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);         }         float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;         if (t3 < 0.0f) n3 = 0.0f;         else         {             t3 *= t3;             n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);         }         // Add contributions from each corner to get the final noise value.         // The result is scaled to stay just inside [-1,1]         return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!     }     private static int FastFloor(float x) {         return (x > 0) ? ((int) x) : (((int) x) - 1);     }     private static float grad(int hash, float x) {         int h = hash & 15;         float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0         if ((h & 8) != 0)             grad = -grad; // Set a random sign for the gradient         return (grad * x); // Multiply the gradient with the distance     }     private static float grad(int hash, float x, float y) {         int h = hash & 7; // Convert low 3 bits of hash code         float u = h < 4 ? x : y; // into 8 simple gradient directions,         float v = h < 4 ? y : x; // and compute the dot product with (x,y).         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);     }     private static float grad(int hash, float x, float y, float z) {         int h = hash & 15; // Convert low 4 bits of hash code into 12 simple         float u = h < 8 ? x : y; // gradient directions, and compute dot                                     // product.         float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h =                                                             // 12 to 15         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);     }     private static float grad(int hash, float x, float y, float z, float t) {         int h = hash & 31; // Convert low 5 bits of hash code into 32 simple         float u = h < 24 ? x : y; // gradient directions, and compute dot                                     // product.         float v = h < 16 ? y : z;         float w = h < 8 ? z : t;         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v)                 + ((h & 4) != 0 ? -w : w);     } }