• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

redpirate

Members
  • Content count

    1
  • Joined

  • Last visited

Community Reputation

249 Neutral

About redpirate

  • Rank
    Newbie
  1. I am on the verge of finally making 2D terrain generation using simplex noise and I have all most of the code down except the world generates too randomly and has random floating islands. I want it to look like terraria and it is looking more like a top-down game. Here is the code for what I have so far:     package main; import org.newdawn.slick.AppGameContainer; import org.newdawn.slick.BasicGame; import org.newdawn.slick.Color; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.geom.Rectangle; public class Game extends BasicGame {     Rectangle[][] world = new Rectangle[15][15];     float[][] noise = new float[15][15];     public Game(String title)     {         super(title);     }     @Override     public void init(GameContainer gc) throws SlickException     {         Noise.seed();         float frequency = 1.0f / (float) world.length;         for (int x = 0; x < world.length; x++)         {             for (int y = 0; y < world[0].length; y++)             {                 noise[x][y] = Noise.Generate((float) x * frequency, (float) y * frequency);             }         }         for (int x = 0; x < 15; x++)         {             for (int y = 0; y < 15; y++)             {                 if (noise[x][y] < 0f)                     world[x][y] = null;                 if (noise[x][y] >= -0f) {                     world[x][y] = new Rectangle(x * 32, y * 32, 32, 32);                 }             }         }     }     @Override     public void render(GameContainer gc, Graphics g) throws SlickException     {            for (int x = 0; x < world.length; x++)         {             for (int y = 0; y < world[0].length; y++)             {                 if (world[x][y] != null)                     g.drawRect(world[x][y].getX(), world[x][y].getY(), world[x][y].getWidth(), world[x][y].getHeight());             }         }     }     @Override     public void update(GameContainer gc, int ticks) throws SlickException     {         // Nothing to update     }     public static void main(String[] args)     {         try         {             AppGameContainer game = new AppGameContainer(new Game("World Generator"));             game.setDisplayMode(1280, 720, false);             game.setTargetFrameRate(60);             game.setAlwaysRender(true);             game.start();         }         catch (SlickException e)         {             e.printStackTrace();         }     } } package main; import java.util.Random; public class Noise {     private static int[] perm = new int[] { 151, 160, 137, 91, 90, 15,         131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69,         142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0,         26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,         237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165,         71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,         60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102,         143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208,         89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,         198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147,         118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182,         189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163,         70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98,         108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,         251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51,         145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,         184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236,         205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215,         61, 156, 180, 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53,         194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21,         10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252,         219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174,         20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27,         166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220,         105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,         1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135,         130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52,         217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85,         212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183,         170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,         167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224,         232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238,         210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239,         107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115,         121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29,         24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 };     public static void seed()     {         Random rand = new Random();         for (int iter = 0; iter < perm.length; iter++)         {             perm[iter] = rand.nextInt(256);         }     }     // / <summary>     // / 1D simplex noise     // / </summary>     // / <param name="x"></param>     // / <returns></returns>     public static float Generate(float x) {         int i0 = FastFloor(x);         int i1 = i0 + 1;         float x0 = x - i0;         float x1 = x0 - 1.0f;         float n0, n1;         float t0 = 1.0f - x0 * x0;         t0 *= t0;         n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);         float t1 = 1.0f - x1 * x1;         t1 *= t1;         n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);         // The maximum value of this noise is 8*(3/4)^4 = 2.53125         // A factor of 0.395 scales to fit exactly within [-1,1]         return 0.395f * (n0 + n1);     }     // / <summary>     // / 2D simplex noise     // / </summary>     // / <param name="x"></param>     // / <param name="y"></param>     // / <returns></returns>     public static float Generate(float x, float y)     {         final float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)         final float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0         float n0, n1, n2; // Noise contributions from the three corners         // Skew the input space to determine which simplex cell we're in         float s = (x + y) * F2; // Hairy factor for 2D         float xs = x + s;         float ys = y + s;         int i = FastFloor(xs);         int j = FastFloor(ys);         float t = (float)(i + j) * G2;         float X0 = i - t; // Unskew the cell origin back to (x,y) space         float Y0 = j - t;         float x0 = x - X0; // The x,y distances from the cell origin         float y0 = y - Y0;         // For the 2D case, the simplex shape is an equilateral triangle.         // Determine which simplex we are in.         int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords         if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)         else { i1 = 0; j1 = 1; }      // upper triangle, YX order: (0,0)->(0,1)->(1,1)         // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and         // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where         // c = (3-sqrt(3))/6         float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords         float y1 = y0 - j1 + G2;         float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords         float y2 = y0 - 1.0f + 2.0f * G2;         // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds         int ii = i % 256;         int jj = j % 256;         // Calculate the contribution from the three corners         float t0 = 0.5f - x0 * x0 - y0 * y0;         if (t0 < 0.0f) n0 = 0.0f;         else         {             t0 *= t0;             n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);         }         float t1 = 0.5f - x1 * x1 - y1 * y1;         if (t1 < 0.0f) n1 = 0.0f;         else         {             t1 *= t1;             n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);         }         float t2 = 0.5f - x2 * x2 - y2 * y2;         if (t2 < 0.0f) n2 = 0.0f;         else         {             t2 *= t2;             n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);         }         // Add contributions from each corner to get the final noise value.         // The result is scaled to return values in the interval [-1,1].         return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!     }     public static float Generate(float x, float y, float z)     {         // Simple skewing factors for the 3D case         final float F3 = 0.333333333f;         final float G3 = 0.166666667f;         float n0, n1, n2, n3; // Noise contributions from the four corners         // Skew the input space to determine which simplex cell we're in         float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D         float xs = x + s;         float ys = y + s;         float zs = z + s;         int i = FastFloor(xs);         int j = FastFloor(ys);         int k = FastFloor(zs);         float t = (float)(i + j + k) * G3;         float X0 = i - t; // Unskew the cell origin back to (x,y,z) space         float Y0 = j - t;         float Z0 = k - t;         float x0 = x - X0; // The x,y,z distances from the cell origin         float y0 = y - Y0;         float z0 = z - Z0;         // For the 3D case, the simplex shape is a slightly irregular tetrahedron.         // Determine which simplex we are in.         int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords         int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords         /* This code would benefit from a backport from the GLSL version! */         if (x0 >= y0)         {             if (y0 >= z0)             { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order             else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order             else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order         }         else         { // x0<y0             if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order             else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order             else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order         }         // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),         // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and         // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where         // c = 1/6.         float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords         float y1 = y0 - j1 + G3;         float z1 = z0 - k1 + G3;         float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords         float y2 = y0 - j2 + 2.0f * G3;         float z2 = z0 - k2 + 2.0f * G3;         float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords         float y3 = y0 - 1.0f + 3.0f * G3;         float z3 = z0 - 1.0f + 3.0f * G3;         // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds         int ii = i % 256;         int jj = j % 256;         int kk = k % 256;         // Calculate the contribution from the four corners         float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;         if (t0 < 0.0f) n0 = 0.0f;         else         {             t0 *= t0;             n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);         }         float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;         if (t1 < 0.0f) n1 = 0.0f;         else         {             t1 *= t1;             n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);         }         float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;         if (t2 < 0.0f) n2 = 0.0f;         else         {             t2 *= t2;             n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);         }         float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;         if (t3 < 0.0f) n3 = 0.0f;         else         {             t3 *= t3;             n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);         }         // Add contributions from each corner to get the final noise value.         // The result is scaled to stay just inside [-1,1]         return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!     }     private static int FastFloor(float x) {         return (x > 0) ? ((int) x) : (((int) x) - 1);     }     private static float grad(int hash, float x) {         int h = hash & 15;         float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0         if ((h & 8) != 0)             grad = -grad; // Set a random sign for the gradient         return (grad * x); // Multiply the gradient with the distance     }     private static float grad(int hash, float x, float y) {         int h = hash & 7; // Convert low 3 bits of hash code         float u = h < 4 ? x : y; // into 8 simple gradient directions,         float v = h < 4 ? y : x; // and compute the dot product with (x,y).         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);     }     private static float grad(int hash, float x, float y, float z) {         int h = hash & 15; // Convert low 4 bits of hash code into 12 simple         float u = h < 8 ? x : y; // gradient directions, and compute dot                                     // product.         float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h =                                                             // 12 to 15         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);     }     private static float grad(int hash, float x, float y, float z, float t) {         int h = hash & 31; // Convert low 5 bits of hash code into 32 simple         float u = h < 24 ? x : y; // gradient directions, and compute dot                                     // product.         float v = h < 16 ? y : z;         float w = h < 8 ? z : t;         return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v)                 + ((h & 4) != 0 ? -w : w);     } }