• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.


  • Content count

  • Joined

  • Last visited

Community Reputation

107 Neutral

About Klopo

  • Rank
  1. Hi Gamedev! I've coded little shader code for my small game to handle lights on my moving rectangles. It work and I'm quite happy with the visual result. Unfortunately it's badly implemented and the number of lights I can have on screen at same time is not enough. Changing pixelshader to use ps_3_0 instead of ps_2_0 made it possible to use 18 lights instead of 3. I know this is a bad solution and what I've to do is lower the number of instructions that is made on the pixel shader.   I would love any help I could get to optimize my code, by moving some parts to the vertex shader or change instructions on pixel shader.   //----------------------------------------------------------------------------- // Texture sampler //----------------------------------------------------------------------------- uniform const texture BasicTexture; uniform const sampler TextureSampler : register(s0) = sampler_state { Texture = (BasicTexture); MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; //----------------------------------------------------------------------------- // Material settings //----------------------------------------------------------------------------- uniform const float3 DiffuseColor : register(c0) = 1; uniform const float Alpha : register(c1) = 1; //----------------------------------------------------------------------------- // Matrices //----------------------------------------------------------------------------- uniform const float4x4 World : register(vs, c2); uniform const float4x4 View : register(vs, c6); uniform const float4x4 Projection : register(vs, c10); //----------------------------------------------------------------------------- // Structure definitions //----------------------------------------------------------------------------- struct CommonVSOutput { float4 Pos_ws; float4 Pos_ps; float4 Diffuse; }; //----------------------------------------------------------------------------- // Vertex shader inputs //----------------------------------------------------------------------------- struct VSInputTx { float4 Position : POSITION; float2 TexCoord : TEXCOORD0; }; //----------------------------------------------------------------------------- // Vertex shader outputs //----------------------------------------------------------------------------- struct VertexLightingVSOutputTx { float4 PositionPS : POSITION; // Position in projection space float4 Diffuse : COLOR0; float2 TexCoord : TEXCOORD0; }; //----------------------------------------------------------------------------- // Pixel shader inputs //----------------------------------------------------------------------------- struct VertexLightingPSInputTx { float4 Diffuse : COLOR0; float2 TexCoord : TEXCOORD0; }; CommonVSOutput ComputeCommonVSOutput(float4 position) { CommonVSOutput vout; float4 pos_ws = mul(position, World); float4 pos_vs = mul(pos_ws, View); float4 pos_ps = mul(pos_vs, Projection); vout.Pos_ws = pos_ws; vout.Pos_ps = pos_ps; vout.Diffuse = float4(DiffuseColor, Alpha); return vout; } VertexLightingVSOutputTx VSBasicTx(VSInputTx vin) { VertexLightingVSOutputTx vout; CommonVSOutput cout = ComputeCommonVSOutput(vin.Position); vout.PositionPS = cout.Pos_ps; vout.Diffuse = cout.Diffuse; vout.TexCoord = vin.TexCoord; return vout; } //----------------------------------------------------------------------------- // Pixel shaders //----------------------------------------------------------------------------- #define MAX_LIGHTS 18 float2 lightPos[MAX_LIGHTS]; float lightRadius[MAX_LIGHTS]; float lightIntensity[MAX_LIGHTS]; float4 lightColor[MAX_LIGHTS]; float objectWidth; float objectHeight; float2 objectPosition; float grayScaleIntensity = 1.0f; float4 PSBasicTx(VertexLightingPSInputTx pin) : COLOR { float4 texCol = tex2D(TextureSampler, pin.TexCoord); float4 color = texCol * pin.Diffuse; //color.a = texCol.a; //Pixel position float2 pixelPos = pin.TexCoord.xy * float2(objectWidth, objectHeight) + objectPosition.xy; //Grayscale float4 grayScale = texCol; grayScale.rgb = dot(texCol.rgb, float3(0.3, 0.59, 0.11)); for(int i = 0; i < MAX_LIGHTS; i++){ float dist = distance(lightPos[i], pixelPos); float distanceFactor = saturate((lightRadius[i]-dist) / lightRadius[i]); grayScale.rgb = lerp(grayScale, texCol, distanceFactor * grayScaleIntensity); color += saturate(distanceFactor * lightIntensity[i]) * (grayScale * lightColor[i]); } //fix overlaping lights color.r = min(color.r, texCol.r); color.b = min(color.b, texCol.b); color.g = min(color.g, texCol.g); return color; } float4 PSBasicTxNoLight(VertexLightingPSInputTx pin) : COLOR { float4 texCol = tex2D(TextureSampler, pin.TexCoord); float4 color = texCol * pin.Diffuse; return color; } //----------------------------------------------------------------------------- // Shader and technique definitions //----------------------------------------------------------------------------- int ShaderIndex = 0; VertexShader VSArray[2] = { compile vs_3_0 VSBasicTx(), compile vs_3_0 VSBasicTx(), }; PixelShader PSArray[2] = { compile ps_3_0 PSBasicTx(), compile ps_3_0 PSBasicTxNoLight(), }; Technique BasicEffect { Pass { VertexShader = (VSArray[ShaderIndex]); PixelShader = (PSArray[ShaderIndex]); } }