Jump to content
  • Advertisement

SpikeViper

Member
  • Content Count

    98
  • Joined

  • Last visited

Community Reputation

324 Neutral

About SpikeViper

  • Rank
    Member

Personal Information

  • Interests
    Programming

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Okay, I've done some research and made a tri-planar shader. It works wonderfully to not stretch textures - but here comes the hard part. How do I communicate which material each vertex of the mesh should be? I'm going to attempt using Vertex Colors that correspond to different textures - I'll post back if successful.
  2.   When you say "empty" value, do you mean a null value or a filler object? I've noticed that a lot of people use "air" blocks (perhaps to avoid dealing with null pointers), but i'm not sure if it makes sense from a memory point of view.         Is the hash function just the sum of the vector elements? Because in that case, yeah, it's problematic to say the least.         My idea was to keep a "BlockType" class reference inside each block, and to create more specialized components by extending the block class. I was also planning to keep block groups (essentially lists) inside the main construct which keep track of categories such as propulsion blocks or weapon blocks.   I use actual values that say empty. Each block has properties, and believe it or not empty blocks have some important ones  - transparency, density, and other values are all needed for my game on a block-by-block basis. You may not need this, so it's really your design choice.
  3.     Using the Cubes algorithm, I am generating planets for my game. It currently works fairly well, but now I have to work on texturing it. What would be the best way going around setting up the UVs for marching cubes meshes? This needs to support different material types, and later on have some sort of blending. Any resources or code help would be greatly appreciated!
  4. For my Unity voxel game, I use 16*16*16 chunks, and use "Empty" values for empty spaces. These "Empty" values are skipped when building the mesh, leaving an empty space. This gives fairly good performance, considering I generate chunks in 3 directions instead of the most commonly used column system.
  5. SpikeViper

    Need some help with Marching Cubes

    Fixed glitch #1! Required loading the data for all 26 neighboring chunks instead of the 6 just touching it before rendering the chunks. Still looking for a method to texture this, though!
  6. If you haven't already begun work on your game, Unity Beta has built in cloud support for free that syncs team member's contributions - like a built-in github.
  7. SpikeViper

    About Game Engines

      Probably all of them. Most major engines (Unity, Unreal, etc.) have networking built in. You will still need the hardware (server itself) and to match that networking to your needs. Honestly, I don't see why you couldn't add networking to other engines as well (that don't already include it). I think this is "which engine would take the least work" or "which engine has built-in capability", since almost any engine can be added to.
  8. SpikeViper

    Need some help with Marching Cubes

      You don´t seem to be using voxelsval for anything, not in FillCube either...? Also, you´re not doing the check I quoted above in your FillCube: cube[i] = planetchunk.planet.planetchunks[cx, cy, cz].blocks[vx, vy, vz].health; Does that have anything to say, or will it yield the same result?     Ah, that's a bit of code that wasn't really needed anymore. Removed it, some speed gains (thanks!), but still not fixed.
  9. Hey guys! my project has grown tremendously since I last asked for help, but now I'm getting to a subject that goes slightly over my head. I'm converting my old cube-based terrain to marching cubes. Using code examples and articles on the internet, I have a working model- but with a few problems I am unsure of how to fix. Thanks in advance!   Problem 1: One row of terrain is always broken   Picture:   This only occurs on terrain who is on position 15 on any axis (upper edge of chunk). I'm probably overlooking a minor issue, but I've looked over this more times than I can count.   Problem 2: Texturing   I coded my block rendering before, and setting up UVs for each face was pretty simple. Now, I have now clue how to map the UVs, nevermind blend them! Any help here would be greatly appreciated!   Relevant code: using UnityEngine; using System.Collections; using System.Collections.Generic; static public class MarchingCubes { //Function delegates, makes using functions pointers easier delegate void MODE_FUNC(Vector3 pos, float[] cube, List<Vector3> vertList, List<int> indexList); //Function pointer to what mode to use, cubes or tetrahedrons static MODE_FUNC Mode_Func = MarchCube; public static float[,,] voxelsval; //Set the mode to use //Cubes is faster and creates less verts, tetrahedrons is slower and creates more verts but better represents the mesh surface static public void SetModeToCubes() { Mode_Func = MarchCube; } static public void SetModeToTetrahedrons() { Mode_Func = MarchCubeTetrahedron; } static public void SetTarget(float tar) { target = tar; } static public void SetWindingOrder(int v0, int v1, int v2) { windingOrder = new int[] { v0, v1, v2 }; } static public Mesh CreateMesh(Block[,,] voxels, PlanetChunk planetchunk) { voxelsval = new float[16,16,16]; for (int x = 0; x < 16; x++) { for (int y = 0; y < 16; y++) { for (int z = 0; z < 16; z++) { if (voxels[x, y, z].type != BlockTypes.typeEmpty) { voxelsval[x, y, z] = voxels[x, y, z].health; } else { voxelsval[x, y, z] = 0; } } } } List<Vector3> verts = new List<Vector3>(); List<int> index = new List<int>(); float[] cube = new float[8]; for (int x = 0; x < voxelsval.GetLength(0); x++) { for (int y = 0; y < voxelsval.GetLength(1); y++) { for (int z = 0; z < voxelsval.GetLength(2); z++) { //Get the values in the 8 neighbours which make up a cube FillCube(x, y, z, voxelsval, cube, planetchunk); //Perform algorithm Mode_Func(new Vector3(x, y, z), cube, verts, index); } } } Mesh mesh = new Mesh(); mesh.vertices = verts.ToArray(); mesh.triangles = index.ToArray(); return mesh; } static void FillCube(int x, int y, int z, float[,,] voxels, float[] cube, PlanetChunk planetchunk) { for (int i = 0; i < 8; i++) { int vx = x + vertexOffset[i, 0]; int vy = y + vertexOffset[i, 1]; int vz = z + vertexOffset[i, 2]; int cx = planetchunk.posx; int cy = planetchunk.posy; int cz = planetchunk.posz; if (vx > 15) { cx = cx + 1; vx = 0; } if (vy > 15) { cy = cy + 1; vy = 0; } if (vz > 15) { cz = cz + 1; vz = 0; } if (vx < 0) { cx = cx - 1; vx = 15; } if (vy < 0) { cy = cy - 1; vy = 15; } if (vz < 0) { cz = cz - 1; vz = 15; } if (planetchunk.planet.planetchunks[cx, cy, cz] == null) { cube[i] = 0f; break; } cube[i] = planetchunk.planet.planetchunks[cx, cy, cz].blocks[vx, vy, vz].health; } } // GetOffset finds the approximate point of intersection of the surface // between two points with the values v1 and v2 static float GetOffset(float v1, float v2) { float delta = v2 - v1; return (delta == 0.0f) ? 0.5f : (target - v1) / delta; } //MarchCube performs the Marching Cubes algorithm on a single cube static void MarchCube(Vector3 pos, float[] cube, List<Vector3> vertList, List<int> indexList) { int i, j, vert, idx; int flagIndex = 0; float offset = 0.0f; Vector3[] edgeVertex = new Vector3[12]; //Find which vertices are inside of the surface and which are outside for (i = 0; i < 8; i++) if (cube[i] <= target) flagIndex |= 1 << i; //Find which edges are intersected by the surface int edgeFlags = cubeEdgeFlags[flagIndex]; //If the cube is entirely inside or outside of the surface, then there will be no intersections if (edgeFlags == 0) return; //Find the point of intersection of the surface with each edge for (i = 0; i < 12; i++) { //if there is an intersection on this edge if ((edgeFlags & (1 << i)) != 0) { offset = GetOffset(cube[edgeConnection[i, 0]], cube[edgeConnection[i, 1]]); edgeVertex[i].x = pos.x + (vertexOffset[edgeConnection[i, 0], 0] + offset * edgeDirection[i, 0]); edgeVertex[i].y = pos.y + (vertexOffset[edgeConnection[i, 0], 1] + offset * edgeDirection[i, 1]); edgeVertex[i].z = pos.z + (vertexOffset[edgeConnection[i, 0], 2] + offset * edgeDirection[i, 2]); } } //Save the triangles that were found. There can be up to five per cube for (i = 0; i < 5; i++) { if (triangleConnectionTable[flagIndex, 3 * i] < 0) break; idx = vertList.Count; for (j = 0; j < 3; j++) { vert = triangleConnectionTable[flagIndex, 3 * i + j]; indexList.Add(idx + windingOrder[j]); vertList.Add(edgeVertex[vert]); } } } //MarchTetrahedron performs the Marching Tetrahedrons algorithm on a single tetrahedron static void MarchTetrahedron(Vector3[] tetrahedronPosition, float[] tetrahedronValue, List<Vector3> vertList, List<int> indexList) { int i, j, vert, vert0, vert1, idx; int flagIndex = 0, edgeFlags; float offset, invOffset; Vector3[] edgeVertex = new Vector3[6]; //Find which vertices are inside of the surface and which are outside for (i = 0; i < 4; i++) if (tetrahedronValue[i] <= target) flagIndex |= 1 << i; //Find which edges are intersected by the surface edgeFlags = tetrahedronEdgeFlags[flagIndex]; //If the tetrahedron is entirely inside or outside of the surface, then there will be no intersections if (edgeFlags == 0) return; //Find the point of intersection of the surface with each edge for (i = 0; i < 6; i++) { //if there is an intersection on this edge if ((edgeFlags & (1 << i)) != 0) { vert0 = tetrahedronEdgeConnection[i, 0]; vert1 = tetrahedronEdgeConnection[i, 1]; offset = GetOffset(tetrahedronValue[vert0], tetrahedronValue[vert1]); invOffset = 1.0f - offset; edgeVertex[i].x = invOffset * tetrahedronPosition[vert0].x + offset * tetrahedronPosition[vert1].x; edgeVertex[i].y = invOffset * tetrahedronPosition[vert0].y + offset * tetrahedronPosition[vert1].y; edgeVertex[i].z = invOffset * tetrahedronPosition[vert0].z + offset * tetrahedronPosition[vert1].z; } } //Save the triangles that were found. There can be up to 2 per tetrahedron for (i = 0; i < 2; i++) { if (tetrahedronTriangles[flagIndex, 3 * i] < 0) break; idx = vertList.Count; for (j = 0; j < 3; j++) { vert = tetrahedronTriangles[flagIndex, 3 * i + j]; indexList.Add(idx + windingOrder[j]); vertList.Add(edgeVertex[vert]); } } } //MarchCubeTetrahedron performs the Marching Tetrahedrons algorithm on a single cube static void MarchCubeTetrahedron(Vector3 pos, float[] cube, List<Vector3> vertList, List<int> indexList) { int i, j, vertexInACube; Vector3[] cubePosition = new Vector3[8]; Vector3[] tetrahedronPosition = new Vector3[4]; float[] tetrahedronValue = new float[4]; //Make a local copy of the cube's corner positions for (i = 0; i < 8; i++) cubePosition[i] = new Vector3(pos.x + vertexOffset[i, 0], pos.y + vertexOffset[i, 1], pos.z + vertexOffset[i, 2]); for (i = 0; i < 6; i++) { for (j = 0; j < 4; j++) { vertexInACube = tetrahedronsInACube[i, j]; tetrahedronPosition[j] = cubePosition[vertexInACube]; tetrahedronValue[j] = cube[vertexInACube]; } MarchTetrahedron(tetrahedronPosition, tetrahedronValue, vertList, indexList); } } //Target is the value that represents the surface of mesh //For example a range of -1 to 1, 0 would be the mid point were we want the surface to cut through //The target value does not have to be the mid point it can be any value with in the range static float target = 0.5f; //Winding order of triangles use 2,1,0 or 0,1,2 static int[] windingOrder = new int[] { 0, 1, 2 }; // vertexOffset lists the positions, relative to vertex0, of each of the 8 vertices of a cube // vertexOffset[8][3] static int[,] vertexOffset = new int[,] { {0, 0, 0},{1, 0, 0},{1, 1, 0},{0, 1, 0}, {0, 0, 1},{1, 0, 1},{1, 1, 1},{0, 1, 1} }; // edgeConnection lists the index of the endpoint vertices for each of the 12 edges of the cube // edgeConnection[12][2] static int[,] edgeConnection = new int[,] { {0,1}, {1,2}, {2,3}, {3,0}, {4,5}, {5,6}, {6,7}, {7,4}, {0,4}, {1,5}, {2,6}, {3,7} }; // edgeDirection lists the direction vector (vertex1-vertex0) for each edge in the cube // edgeDirection[12][3] static float[,] edgeDirection = new float[,] { {1.0f, 0.0f, 0.0f},{0.0f, 1.0f, 0.0f},{-1.0f, 0.0f, 0.0f},{0.0f, -1.0f, 0.0f}, {1.0f, 0.0f, 0.0f},{0.0f, 1.0f, 0.0f},{-1.0f, 0.0f, 0.0f},{0.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f},{0.0f, 0.0f, 1.0f},{ 0.0f, 0.0f, 1.0f},{0.0f, 0.0f, 1.0f} }; // tetrahedronEdgeConnection lists the index of the endpoint vertices for each of the 6 edges of the tetrahedron // tetrahedronEdgeConnection[6][2] static int[,] tetrahedronEdgeConnection = new int[,] { {0,1}, {1,2}, {2,0}, {0,3}, {1,3}, {2,3} }; // tetrahedronEdgeConnection lists the index of verticies from a cube // that made up each of the six tetrahedrons within the cube // tetrahedronsInACube[6][4] static int[,] tetrahedronsInACube = new int[,] { {0,5,1,6}, {0,1,2,6}, {0,2,3,6}, {0,3,7,6}, {0,7,4,6}, {0,4,5,6} }; // For any edge, if one vertex is inside of the surface and the other is outside of the surface // then the edge intersects the surface // For each of the 4 vertices of the tetrahedron can be two possible states : either inside or outside of the surface // For any tetrahedron the are 2^4=16 possible sets of vertex states // This table lists the edges intersected by the surface for all 16 possible vertex states // There are 6 edges. For each entry in the table, if edge #n is intersected, then bit #n is set to 1 // tetrahedronEdgeFlags[16] static int[] tetrahedronEdgeFlags = new int[] { 0x00, 0x0d, 0x13, 0x1e, 0x26, 0x2b, 0x35, 0x38, 0x38, 0x35, 0x2b, 0x26, 0x1e, 0x13, 0x0d, 0x00 }; // For each of the possible vertex states listed in tetrahedronEdgeFlags there is a specific triangulation // of the edge intersection points. tetrahedronTriangles lists all of them in the form of // 0-2 edge triples with the list terminated by the invalid value -1. // tetrahedronTriangles[16][7] static int[,] tetrahedronTriangles = new int[,] { {-1, -1, -1, -1, -1, -1, -1}, { 0, 3, 2, -1, -1, -1, -1}, { 0, 1, 4, -1, -1, -1, -1}, { 1, 4, 2, 2, 4, 3, -1}, { 1, 2, 5, -1, -1, -1, -1}, { 0, 3, 5, 0, 5, 1, -1}, { 0, 2, 5, 0, 5, 4, -1}, { 5, 4, 3, -1, -1, -1, -1}, { 3, 4, 5, -1, -1, -1, -1}, { 4, 5, 0, 5, 2, 0, -1}, { 1, 5, 0, 5, 3, 0, -1}, { 5, 2, 1, -1, -1, -1, -1}, { 3, 4, 2, 2, 4, 1, -1}, { 4, 1, 0, -1, -1, -1, -1}, { 2, 3, 0, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1} }; // For any edge, if one vertex is inside of the surface and the other is outside of the surface // then the edge intersects the surface // For each of the 8 vertices of the cube can be two possible states : either inside or outside of the surface // For any cube the are 2^8=256 possible sets of vertex states // This table lists the edges intersected by the surface for all 256 possible vertex states // There are 12 edges. For each entry in the table, if edge #n is intersected, then bit #n is set to 1 // cubeEdgeFlags[256] static int[] cubeEdgeFlags = new int[] { 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x099, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x033, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0x0aa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x066, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0x0ff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x055, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0x0cc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0x0cc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x055, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0x0ff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x066, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0x0aa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x033, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x099, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000 }; // For each of the possible vertex states listed in cubeEdgeFlags there is a specific triangulation // of the edge intersection points. triangleConnectionTable lists all of them in the form of // 0-5 edge triples with the list terminated by the invalid value -1. // For example: triangleConnectionTable[3] list the 2 triangles formed when corner[0] // and corner[1] are inside of the surface, but the rest of the cube is not. // triangleConnectionTable[256][16] static int[,] triangleConnectionTable = new int[,] { {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} }; }
  10. SpikeViper

    V0xel Sp4ce - Playable Demo

    The latest Unity beta.
  11. SpikeViper

    V0xel Sp4ce - Playable Demo

    [quote name="Navyman" timestamp="1471754044"]Sounds like you had tons of fun just making the video! :)[/quote] I won't lie, seeing all the work put in functioning properly is enough to make all the bug fixing seem more than worth it. It's a great feeling. With all the main systems done, I can now focus on the fun parts of the game, which makes me really excited. :)
  12. SpikeViper

    V0xel Sp4ce - Playable Demo

    I've added enough features to make a demo download! This includes: Procedural Generation Saving / Loading Building Control scheme If your interested, I have a video with a download at . I'll go into more depth on each system once I have the time.
  13. I was programming my game today (about 20% complete) and thought to myself, "What am I actually going to do once this is finished?" Should I do an alpha release? Should I start a business? Greenlight it on steam? Advertise? I'm 15, with an above-average knowledge on business (for my age), and I can handle a lot of things - I can make websites myself and stuff, but how would I actually go about the business part of it all? This is mostly hypothetical, because my game isn't so close to done - probably months, maybe a year away from alpha.
  14. SpikeViper

    Should I leave Unity?

    It CAN be called multiple times, but in this case it's only being called once. They contain what they sound like - triangle ints, uv Vector2s, and vertex Vector3s.   Then those old items are going to be destroyed when you call that function to overwrite them with new data. That's the generated garbage you're worried about.     It CAN be, but it's only being called once in this case. And it's still causing problems.
  15. SpikeViper

    Should I leave Unity?

    Observations: Your allocated memory is never visibly going down when the GC triggers. This means that the size of garbage objects is minimal compared to your live objects. Notice how allocated memory keeps rapidly increasing? This is bad because you'll eventually run out of memory and your game will terminate. Normally if you are generating a lot of tiny garbage objects, you'll see a sudden drop in allocated memory whenever the GC triggers. You're allocating a lot of memory extremely rapidly. Can you describe what conditions cause UpdatePlanetChunk to be called, and what it does? Your mesh memory is also increasing extremely rapidly. Are you forgetting to destroy old mesh objects when you're no longer using them?     I am testing a procedural planet, so it is loading and not being unloaded at the moment. I set the load range to infinite, so this explains rising allocations. UpdatePlanetChunk is called under 2 conditions: When it is first made, and when a chunk is edited. Currently, I'm testing just making them and not editing them.
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

GameDev.net is your game development community. Create an account for your GameDev Portfolio and participate in the largest developer community in the games industry.

Sign me up!