• Advertisement

Search the Community

Showing results for tags 'Vulkan' in content posted in Graphics and GPU Programming.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Audio
    • Music and Sound FX
  • Business
    • Business and Law
    • Career Development
    • Production and Management
  • Game Design
    • Game Design and Theory
    • Writing for Games
    • UX for Games
  • Industry
    • Interviews
    • Event Coverage
  • Programming
    • Artificial Intelligence
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Engines and Middleware
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
  • Archive

Categories

  • News

Categories

  • Audio
  • Visual Arts
  • Programming
  • Writing

Categories

  • GameDev Unboxed

Categories

  • Game Dev Loadout

Categories

  • Game Developers Conference
    • GDC 2017
    • GDC 2018
  • Power-Up Digital Games Conference
    • PDGC I: Words of Wisdom
    • PDGC II: The Devs Strike Back
    • PDGC III: Syntax Error

Forums

  • Audio
    • Music and Sound FX
  • Business
    • Games Career Development
    • Production and Management
    • Games Business and Law
  • Game Design
    • Game Design and Theory
    • Writing for Games
  • Programming
    • Artificial Intelligence
    • Engines and Middleware
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
    • 2D and 3D Art
    • Critique and Feedback
  • Topical
    • Virtual and Augmented Reality
    • News
  • Community
    • For Beginners
    • GameDev Challenges
    • GDNet+ Member Forum
    • GDNet Lounge
    • GDNet Comments, Suggestions, and Ideas
    • Coding Horrors
    • Your Announcements
    • Hobby Project Classifieds
    • Indie Showcase
    • Article Writing
  • Affiliates
    • NeHe Productions
    • AngelCode
  • Workshops
    • C# Workshop
    • CPP Workshop
    • Freehand Drawing Workshop
    • Hands-On Interactive Game Development
    • SICP Workshop
    • XNA 4.0 Workshop
  • Archive
    • Topical
    • Affiliates
    • Contests
    • Technical
  • GameDev Challenges's Topics

Calendars

  • Community Calendar
  • Games Industry Events
  • Game Jams
  • GameDev Challenges's Schedule

Blogs

There are no results to display.

There are no results to display.

Developers

Developers


Group


About Me


Website


Industry Role


Twitter


Github


Twitch


Steam

Found 102 results

  1. I have a pretty good experience with multi gpu programming in D3D12. Now looking at Vulkan, although there are a few similarities, I cannot wrap my head around a few things due to the extremely sparse documentation (typical Khronos...) In D3D12 -> You create a resource on GPU0 that is visible to GPU1 by setting the VisibleNodeMask to (00000011 where last two bits set means its visible to GPU0 and GPU1) In Vulkan - I can see there is the VkBindImageMemoryDeviceGroupInfoKHR struct which you add to the pNext chain of VkBindImageMemoryInfoKHR and then call vkBindImageMemory2KHR. You also set the device indices which I assume is the same as the VisibleNodeMask except instead of a mask it is an array of indices. Till now it's fine. Let's look at a typical SFR scenario: Render left eye using GPU0 and right eye using GPU1 You have two textures. pTextureLeft is exclusive to GPU0 and pTextureRight is created on GPU1 but is visible to GPU0 so it can be sampled from GPU0 when we want to draw it to the swapchain. This is in the D3D12 world. How do I map this in Vulkan? Do I just set the device indices for pTextureRight as { 0, 1 } Now comes the command buffer submission part that is even more confusing. There is the struct VkDeviceGroupCommandBufferBeginInfoKHR. It accepts a device mask which I understand is similar to creating a command list with a certain NodeMask in D3D12. So for GPU1 -> Since I am only rendering to the pTextureRight, I need to set the device mask as 2? (00000010) For GPU0 -> Since I only render to pTextureLeft and finally sample pTextureLeft and pTextureRight to render to the swap chain, I need to set the device mask as 1? (00000001) The same applies to VkDeviceGroupSubmitInfoKHR? Now the fun part is it does not work . Both command buffers render to the textures correctly. I verified this by reading back the textures and storing as png. The left texture is sampled correctly in the final composite pass. But I get a black in the area where the right texture should appear. Is there something that I am missing in this? Here is a code snippet too void Init() { RenderTargetInfo info = {}; info.pDeviceIndices = { 0, 0 }; CreateRenderTarget(&info, &pTextureLeft); // Need to share this on both GPUs info.pDeviceIndices = { 0, 1 }; CreateRenderTarget(&info, &pTextureRight); } void DrawEye(CommandBuffer* pCmd, uint32_t eye) { // Do the draw // Begin with device mask depending on eye pCmd->Open((1 << eye)); // If eye is 0, we need to do some extra work to composite pTextureRight and pTextureLeft if (eye == 0) { DrawTexture(0, 0, width * 0.5, height, pTextureLeft); DrawTexture(width * 0.5, 0, width * 0.5, height, pTextureRight); } // Submit to the correct GPU pQueue->Submit(pCmd, (1 << eye)); } void Draw() { DrawEye(pRightCmd, 1); DrawEye(pLeftCmd, 0); }
  2. Hi, I finally managed to get the DX11 emulating Vulkan device working but everything is flipped vertically now because Vulkan has a different clipping space. What are the best practices out there to keep these implementation consistent? I tried using a vertically flipped viewport, and while it works on Nvidia 1050, the Vulkan debug layer is throwing error messages that this is not supported in the spec so it might not work on others. There is also the possibility to flip the clip scpace position Y coordinate before writing out with vertex shader, but that requires changing and recompiling every shader. I could also bake it into the camera projection matrices, though I want to avoid that because then I need to track down for the whole engine where I upload matrices... Any chance of an easy extension or something? If not, I will probably go with changing the vertex shaders.
  3. vkQueuePresentKHR is busy waiting - ie. wasting all the CPU cycles while waiting for vsync. Expected, sane, behavior would of course be akin to Sleep(0) till it can finish. Windows 7, GeForce GTX 660. Is this a common problem? Is there anything i can do to make it behave properly?
  4. I am working on reusing as many command buffers as I can by pre-recording them at load time. This gives a significant boost on CPU although now I cannot get the GPU timestamps since there is no way to read back. I Map the readback buffer before and Unmap it after reading is done. Does this mean I need a persistently mapped readback buffer? void Init() { beginCmd(cmd); cmdBeginQuery(cmd); // Do a bunch of stuff cmdEndQuery(cmd); endCmd(cmd); } void Draw() { CommandBuffer* cmd = commands[frameIdx]; submit(cmd); } The begin and end query do exactly what the names say.
  5. I publishing for manufacturing our ray tracing engines and products on graphics API (C++, Vulkan API, GLSL460, SPIR-V): https://github.com/world8th/satellite-oem For end users I have no more products or test products. Also, have one simple gltf viewer example (only source code). In 2016 year had idea for replacement of screen space reflections, but in 2018 we resolved to finally re-profile project as "basis of render engine". In Q3 of 2017 year finally merged to Vulkan API.
  6. https://www.phoronix.com/scan.php?page=article&item=vulkan-on-mac&num=1 Isn't there a similar Khronos project for DX12 to Vulkan that would cover Xbox?
  7. Hi, right now building my engine in visual studio involves a shader compiling step to build hlsl 5.0 shaders. I have a separate project which only includes shader sources and the compiler is the visual studio integrated fxc compiler. I like this method because on any PC that has visual studio installed, I can just download the solution from GitHub and everything just builds without additional dependencies and using the latest version of the compiler. I also like it because the shaders are included in the solution explorer and easy to browse, and double-click to open (opening files can be really a pain in the ass in visual studio run in admin mode). Also it's nice that VS displays the build output/errors in the output window. But now I have the HLSL 6 compiler and want to build hlsl 6 shaders as well (and as I understand I can also compile vulkan compatible shaders with it later). Any idea how to do this nicely? I want only a single project containing shader sources, like it is now, but build them for different targets. I guess adding different building projects would be the way to go that reference the shader source project? But how would they differentiate from shader type of the sources (eg. pixel shader, compute shader,etc.)? Now the shader building project contains for each shader the shader type, how can other building projects reference that? Anyone with some experience in this?
  8. I am working on a compute shader in Vulkan which does some image processing and has 1024 * 5=5120 loop iterations (5 outer and 1024 inner) If I do this, I get a device lost error after the succeeding call to queueSubmit after the image processing queueSubmit // Image processing dispatch submit(); waitForFence(); // All calls to submit after this will give the device lost error If I lower the number of loops from 1024 to 256 => 5 * 256 = 1280 loop iterations, it works fine. The shader does some pretty heavy arithmetic operations but the number of resources bound is 3 (one SRV, one UAV, and one sampler). The thread group size is x=16 ,y=16,z=1 So my question - Is there a hardware limit to the number of loop executions/number of instructions per shader?
  9. I wanted to see how others are currently handling descriptor heap updates and management. I've read a few articles and there tends to be three major strategies : 1 ) You split up descriptor heaps per shader stage ( i.e one for vertex shader , pixel , hull, etc) 2) You have one descriptor heap for an entire pipeline 3) You split up descriptor heaps for update each update frequency (i.e EResourceSet_PerInstance , EResourceSet_PerPass , EResourceSet_PerMaterial, etc) The benefits of the first two approaches is that it makes it easier to port current code, and descriptor / resource descriptor management and updating tends to be easier to manage, but it seems to be not as efficient. The benefits of the third approach seems to be that it's the most efficient because you only manage and update objects when they change.
  10. Hello guys, My math is failing and can't get my orthographic projection matrix to work in Vulkan 1.0 (my implementation works great in D3D11 and D3D12). Specifically, there's nothing being drawn on the screen when using an ortho matrix but my perspective projection matrix work fantastic! I use glm with defines GLM_FORCE_LEFT_HANDED and GLM_FORCE_DEPTH_ZERO_TO_ONE (to handle 0 to 1 depth). This is how i define my matrices: m_projection_matrix = glm::perspective(glm::radians(fov), aspect_ratio, 0.1f, 100.0f); m_ortho_matrix = glm::ortho(0.0f, (float)width, (float)height, 0.0f, 0.1f, 100.0f); // I also tried 0.0f and 1.0f for depth near and far, the same I set and work for D3D but in Vulkan it doesn't work either. Then I premultiply both matrices with a "fix matrix" to invert the Y axis: glm::mat4 matrix_fix = {1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; m_projection_matrix = m_projection_matrix * matrix_fix; m_ortho_matrix = m_ortho_matrix * matrix_fix; This fix matrix works good in tandem with GLM_FORCE_DEPTH_ZERO_TO_ONE. Model/World matrix is the identity matrix: glm::mat4 m_world_matrix(1.0f); Then finally this is how i set my view matrix: // Yes, I use Euler angles (don't bring the gimbal lock topic here, lol). They work great with my cameras in D3D too! m_view_matrix = glm::yawPitchRoll(glm::radians(m_rotation.y), glm::radians(m_rotation.x), glm::radians(m_rotation.z)); m_view_matrix = glm::translate(m_view_matrix, -m_position); That's all guys, in my shaders I correctly multiply all 3 matrices with the position vector and as I said, the perspective matrix works really good but my ortho matrix displays no geometry. EDIT: My vertex data is also on the right track, I use the same geometry in D3D and it works great: 256.0f units means 256 points/dots/pixels wide. What could I possibly be doing wrong or missing? Big thanks guys any help would be greatly appreciated. Keep on coding, cheers.
  11. Hey, I was wondering if on mobile development (Android mainly but iOS as well if you know of it), if there is a GPUView equivalent for whole system debugging so we can figure out if the CPU/GPU are being pipelined efficiently, if there are bubbles, etc. Also slightly tangent question, but do mobile GPU's have a DMA engine exposed as a dedicated Transfer Queue for Vulkan?
  12. I am working on a project which needs to share render targets between Vulkan and DirectX12. I have enabled the external memory extension and now allocate the memory for the render targets by adding the VkExportMemoryInfoKHR to the pNext chain of VkMemoryAllocateInfo. Similarly I have added the VkExternalMemoryImageCreateInfo to the pNext chain of VkImageCreateInfo. After calling the get win32 handle function, I get some handle pointer which is not null (I assume it is valid). VkExternalMemoryImageCreateInfoKHR externalImageInfo = {}; if (gExternalMemoryExtensionKHR) { externalImageInfo.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR; externalImageInfo.pNext = NULL; externalImageInfo.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KH imageCreateInfo.pNext = &externalImageInfo; } vkCreateImage(...); VkExportMemoryAllocateInfoKHR exportInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; exportInfo.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR | VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR; memoryAllocateInfo.pNext = &exportInfo; vkAllocateMemory(...); VkMemoryGetWin32HandleInfoKHR info = { VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR, NULL }; info.memory = pTexture->GetMemory(); info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR; VkResult res = vkGetMemoryWin32HandleKHR(vulkanDevice, &info, &pTexture->pSharedHandle); ASSERT(VK_SUCCESS == res); Now when I try to call OpenSharedHandle from a D3D12 device, it crashes inside nvwgf2umx.dll with the integer division by zero error. I am now lost and have no idea what the other handle types do. For example: How do we get the D3D12 resource from the VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR handle? I also found some documentation on this link but it doesn't help much. https://javadoc.lwjgl.org/org/lwjgl/vulkan/NVExternalMemoryWin32.html This is all assuming the extension works as expected since it has made it to the KHR
  13. I am trying to get vulkan on android working and have run into a big issue. I don't see any validation layers available. I have tried linking their libraries into mine but still no layers. I have tried compiling it into a library of my own but the headers for it are all over the place. Unfortunately , google's examples and tutorials are out of date and don't work for me. Any idea what I have to do to get those layers to work?
  14. It seems like nobody really knows what is the correct behavior after window minimizes in Vulkan. I have looked at most of the examples (Sascha Willems, GPUOpen,...) and all of them crash after the window minimize event with the error VK_ERROR_OUT_OF_DATE either with an assertion during acquire image or after calling present. This is because we have to recreate the swap chain. I tried this but then Vulkan expects you to provide a swap chain with extents { 0, 0, 0, 0 }, but now if you try to set the viewport or create new image views with extents { 0, 0, 0, 0 }, Vulkan expects you to provide non-zero values. So now I am confused. Should we just do nothing after a window minimize event? No rendering, update, ...?
  15. Hi all, First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource! Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots: The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios. Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
  16. Hi, In Vulkan you have render passes where you specify which attachments to render to and which to read from, and subpasses within the render pass which can depend on each other. If one subpass needs to finish before another can begin you specify that with a subpass dependency. In my engine I don't currently use subpasses as the concept of the "render pass" translates roughly to setting a render target and clearing it followed by a number of draw calls in DirectX, while there isn't really any good way to model subpasses in DX. Because of this, in Vulkan, my frame mostly consists of a number of render passes each with one subpass. My question is, do I have to specify dependencies between the render passes or is that needed only if you have multiple subpasses? In the Vulkan Programming Guide, chapter 13 it says: "In the example renderpass we set up in Chapter 7, we used a single subpass with no dependencies and a single set of outputs.”, which suggests that you only need dependencies between subpasses, not between render passes. However, the (excellent) tutorials at vulkan-tutorial.com have you creating a subpass dependency to "external subpasses" in the chapter on "Rendering and presentation", under "Subpass dependencies": https://vulkan-tutorial.com/Drawing_a_triangle/Drawing/Rendering_and_presentation even if they are using only one render pass with a single subpass. So, in short; If I have render pass A, with a single subpass, rendering to an attachment and render pass B, also with a single subpass, rendering to that same attachment, do I have to specify subpass dependencies between the two subpasses of the render passes, in order to make render pass A finish before B can begin, or are they handled implicitly by the fact that they belong to different render passes? Thanks!
  17. I am looking at the SaschaWillems subpass example for getting some insight into subpass depdendencies but its hard to understand whats going on without any comments. Also there is not a lot of documentation on subpass dependencies overall. Looking at the code, I can see that user specifies the src subpass, dst subpass and src state, dst state. But there is no mention of which resource the dependency is on. Is a subpass dependency like a pipeline barrier. If yes, how does it issue the barrier? Is the pipeline barrier issued on all attachments in the subpass with the input src and dst access flags? Any explanation will really clear a lot of doubts on subpass dependencies. Thank you
  18. I need to index into a texture array using indices which are not dynamically uniform. This works fine on NVIDIA chips but you can see the artifacts on AMD due to the wavefront problem. This means, a lot of pixel invocations get the wrong index value. I know you fix this by using NonUniformResourceIndex in hlsl. Is there an equivalent for Vulkan glsl? This is the shader code for reference. As you can see, index is an arbitrary value for each pixel and is not dynamically uniform. I fix this for hlsl by using NonUniformResourceIndex(index) layout(set = 0, binding = 0) uniform sampler textureSampler; layout(set = 0, binding = 1) uniform texture2D albedoMaps[256]; layout(location = 0) out vec4 oColor; void main() { uint index = calculate_arbitrary_texture_index(); vec2 texCoord = calculate_texcoord(); vec4 albedo = texture(sampler2D(albedoMaps[index], textureSampler), texCoord); oColor = albedo; } Thank you
  19. As the title says, I am explicitly creating a too small descriptor pool, which should NOT support the resources I am going to allocate from it. std::array<vk::DescriptorPoolSize, 3> type_count; // Initialize our pool with these values type_count[0].type = vk::DescriptorType::eCombinedImageSampler; type_count[0].descriptorCount = 0; type_count[1].type = vk::DescriptorType::eSampler; type_count[1].descriptorCount = 0; type_count[2].type = vk::DescriptorType::eUniformBuffer; type_count[2].descriptorCount = 0; vk::DescriptorPoolCreateInfo createInfo = vk::DescriptorPoolCreateInfo() .setPNext(nullptr) .setMaxSets(iMaxSets) .setPoolSizeCount(type_count.size()) .setPPoolSizes(type_count.data()); pool = aDevice.createDescriptorPool(createInfo); I have an allocation function which looks like this, I am allocating a uniform, image-combined sampler and a regular sampler. Though if my pool is empty this should not work? vk::DescriptorSetAllocateInfo alloc_info[1] = {}; alloc_info[0].pNext = NULL; alloc_info[0].setDescriptorPool(pool); alloc_info[0].setDescriptorSetCount(iNumToAllocate); alloc_info[0].setPSetLayouts(&iDescriptorLayouts); std::vector<vk::DescriptorSet> tDescriptors; tDescriptors.resize(iNumToAllocate); iDevice.allocateDescriptorSets(alloc_info, tDescriptors.data());
  20. When loading in a model with a lot of meshes that have different materials that contain different textures, how would you handle this in Vulkan? Is it possible to partially change a DescriptorSet with a WriteDescriptorSet object? Even if it is possible, it does not sound ideal to update the descriptor set for every mesh. I am aware of the boundless texture arrays in shader model 5.0+, but for now I want to keep it as simple as possible.
  21. It is a bit unclear to me for what kind of tasks you would want to create a new command buffer/how to use them. is it ideal to have a command buffer per draw call? Per material call? Per render-pass? I know in Dx12 command lists can have complete rendering pipelines recorded, but I am a bit unsure how to see command buffers in Vulkan.
  22. So I've been trying to implement a multi-threaded resource system w/ vulkan in my free time, where a thread can request a resource to be loaded, and it gets pushed into a queue. On another thread, the resource (as of right now, a mesh) gets loaded from a file, and I map the data to a staging buffer. The issue comes in where I record the command buffer to copy the data to a GPU buffer. I record a secondary command buffer w/ just the vkCmdCopyBuffer command, and push it to a queue to be executed from a primary command buffer on the main thread to a transfer-only queue. As far as I can tell, the staging works fine, and the mesh is drawn and looks perfectly fine, but my validation layers (VK_LAYER_LUNARG_standard_validation) spam tell me: "vkCmdBindIndexBuffer(): Cannot read invalid region of memory allocation 0x16 for bound Buffer object 0x15, please fill the memory before using," and the vertex buffer binding gives me an identical message. Both buffers were created with the proper bits, TRANSFER_SRC for the staging buffer, TRANSFER_DST for the gpu buffer (plus index and vertex buffer usage bits). I use Vulkan Memory Allocator from GPUOpen to handle buffer memory allocation, and I'm careful to make sure that the staging buffer is mapped properly and isn't deleted before the command finishes. The validation layers stop spamming telling me this error if I switch the copy commands to using primary buffers, even when recorded in the same way (i.e. just changing the level parameter), but everything I've seen recommends recording secondary command buffers simultaneously on worker threads, and submitting them on the main thread later. Any ideas on why my validation layers are freaking out, or did I just skip over something when reading the spec? Here's some relevant code:
  23. If I have an array of storage buffers or constant buffers with descriptor type UNIFORM/STORAGE_BUFFER_DYNAMIC how would I specify the dynamic offsets in bind descriptor sets? Offsets: A[0] = 256 A[1] = 1024 A[2] = 4096 A[3] = 8192 Will the dynamic offsets array look like { 256, 1024, ... }? And what will be the dynamicOffsetCount? Will it be 1 or the array size?
  24. Does anyone know what is Vulkan's version of the UAVBarrier in DX12? In my situation, I have two compute shaders. The first one clears the uav and second one writes to the uav. void ComputePass(Cmd* pCmd) { cmdDispatch(pCmd, pClearBufferPipeline); // Barrier to make sure clear buffer shader and fill buffer shader dont execute in parallel cmdUavBarrier(pCmd, pUavBuffer); cmdDispatch(pCmd, pFillBufferPipeline); } My best guess was the VkMemoryBarrier but I am not very familiar with vulkan barriers. So any info on this would really help. Thank you.
  25. Hi, I posted on here a while back about rendering architecture and came away with some great information. I am planning on implementing a render queue which collects the visible objects in the scene and sorts them based on different criteria to minimise state change etc.. The thing I am currently undecided about is: what is the best way to submit my draw calls? (I am wanting to support both OpenGL and Vulkan) At the moment I have two ideas for how I can handle it. The renderable handles the rendering (i.e. It calls renderContext->BindVertexBuffer(...) etc) and setup the renderer state Pro- Each renderable is full in control of how it renders Con - Have to manually manage state The renderable pushes RenderCommands (DrawMesh, DrawMeshIndexed etc) into a CommandBuffer that gets executed by the RenderBacked at the end of the frame Pro - Stateless Con - Seems more difficult to extend with new features Pro/Con - The front end only has a subset of rendering capabilities There are more pros / cons for each, but I have listed a couple to help show my thinking.. Any one have any comments on either of these two approaches or any other approaches that are typically used? Thanks
  • Advertisement