Jump to content
  • Advertisement

Search the Community

Showing results for tags 'Bullet'.

The search index is currently processing. Current results may not be complete.


More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Audio
    • Music and Sound FX
  • Business
    • Business and Law
    • Career Development
    • Production and Management
  • Game Design
    • Game Design and Theory
    • Writing for Games
    • UX for Games
  • Industry
    • Interviews
    • Event Coverage
  • Programming
    • Artificial Intelligence
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Engines and Middleware
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
  • Archive

Categories

  • Audio
  • Visual Arts
  • Programming
  • Writing

Categories

  • Game Dev Loadout
  • Game Dev Unchained

Categories

  • Game Developers Conference
    • GDC 2017
    • GDC 2018
  • Power-Up Digital Games Conference
    • PDGC I: Words of Wisdom
    • PDGC II: The Devs Strike Back
    • PDGC III: Syntax Error

Forums

  • Audio
    • Music and Sound FX
  • Business
    • Games Career Development
    • Production and Management
    • Games Business and Law
  • Game Design
    • Game Design and Theory
    • Writing for Games
  • Programming
    • Artificial Intelligence
    • Engines and Middleware
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
    • 2D and 3D Art
    • Art Critique and Feedback
  • Community
    • GameDev Challenges
    • GDNet+ Member Forum
    • GDNet Lounge
    • GDNet Comments, Suggestions, and Ideas
    • Coding Horrors
    • Your Announcements
    • Hobby Project Classifieds
    • Indie Showcase
    • Article Writing
  • Affiliates
    • NeHe Productions
    • AngelCode
  • Topical
    • Virtual and Augmented Reality
    • News
  • Workshops
    • C# Workshop
    • CPP Workshop
    • Freehand Drawing Workshop
    • Hands-On Interactive Game Development
    • SICP Workshop
    • XNA 4.0 Workshop
  • Archive
    • Topical
    • Affiliates
    • Contests
    • Technical
  • GameDev Challenges's Topics
  • For Beginners's Forum
  • Unreal Engine Users's Unreal Engine Group Forum
  • Unity Developers's Forum
  • Unity Developers's Asset Share

Calendars

  • Community Calendar
  • Games Industry Events
  • Game Jams
  • GameDev Challenges's Schedule

Blogs

There are no results to display.

There are no results to display.

Product Groups

  • Advertisements
  • GameDev Gear

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


About Me


Website


Role


Twitter


Github


Twitch


Steam

Found 3 results

  1. malhotraprateek

    Bullet Bullet Debug Visualization

    Hi, I have created a basic debug viewer for Bullet while working on my game engine. It uses three.js to render debug lines, and communicates to the application (i.e. server) via web socket. Link: bullet-visualization Included in the repo is some reference code for creating the server (C++) using the net11 library (details on github). For now, it can only draw debug lines (no contact points or text). It might be useful for de-coupling in game rendering and debug draw. The project is MIT licensed and contributions are very welcome ☺️.
  2. thecheeselover

    Unit Vision

    Subscribe to our subreddit to get all the updates from the team! First off, here's a video that shows the unit vision in action : So, what is the unit vision? It's a simple mechanism that notifies a unit when another unit enters its vision field. It also takes into account if the vision is blocked by entities. This is how it is implemented step by step : A cone ghost control is attached to the unit's head All units intersecting with the cone's AABB fire events (AABB because of how Bullet Physics work) Cast a ray towards the visible unit and then adjust the angle so that it fits in the cone If the ray cast touches the supposedly visible unit, then it is truly visible Using the debug view of Bullet Physics in the jMonkey Engine 3.1, we're able to see what the vision cone actually looks like. And when inside the cone we can't see it because of culling. However, we can see the enemy's arm moving, which is a test I did for when a unit see another unit. Behind a box, the enemy does not move its arm because he can't see me. But when I leave my hiding spot, he can see me again.
  3. Original Post: Limitless Curiosity Out of various phases of the physics engine. Constraint Resolution was the hardest for me to understand personally. I need to read a lot of different papers and articles to fully understand how constraint resolution works. So I decided to write this article to help me understand it more easily in the future if, for example, I forget how this works. This article will tackle this problem by giving an example then make a general formula out of it. So let us delve into a pretty common scenario when two of our rigid bodies collide and penetrate each other as depicted below. From the scenario above we can formulate: We don't want our rigid bodies to intersect each other, thus we construct a constraint where the penetration depth must be more than zero. \(C: d>=0\) This is an inequality constraint, we can transform it to a more simple equality constraint by only solving it if two bodies are penetrating each other. If two rigid bodies don't collide with each other, we don't need any constraint resolution. So: if d>=0, do nothing else if d < 0 solve C: d = 0 Now we can solve this equation by calculating \( \Delta \vec{p1},\Delta \vec{p2},\Delta \vec{r1}\),and \( \Delta \vec{r2}\) that cause the constraint above satisfied. This method is called the position-based method. This will satisfy the above constraint immediately in the current frame and might cause a jittery effect. A much more modern and preferable method that is used in Box2d, Chipmunk, Bullet and my physics engine is called the impulse-based method. In this method, we derive a velocity constraint equation from the position constraint equation above. We are working in 2D so angular velocity and the cross result of two vectors are scalars. Next, we need to find \(\Delta V\) or impulse to satisfy the velocity constraint. This \(\Delta V\) is caused by a force. We call this force 'constraint force'. Constraint force only exerts a force on the direction of illegal movement in our case the penetration normal. We don't want this force to do any work, contribute or restrict any motion of legal direction. \(\lambda\) is a scalar, called Lagrangian multiplier. To understand why constraint force working on \(J^{T}\) direction (remember J is a 12 by 1 matrix, so \(J^{T}\) is a 1 by 12 matrix or a 12-dimensional vector), try to remember the equation for a three-dimensional plane. Now we can draw similarity between equation(1) and equation(2), where \(\vec{n}^{T}\) is similar to J and \(\vec{v}\) is similar to V. So we can interpret equation(1) as a 12 dimensional plane, we can conclude that \(J^{T}\) as the normal of this plane. If a point is outside a plane, the shortest distance from this point to the surface is the normal direction. After we calculate the Lagrangian multiplier, we have a way to get back the impulse from equation(3). Then, we can apply this impulse to each rigid body. Baumgarte Stabilization Note that solving the velocity constraint doesn't mean that we satisfy the position constraint. When we solve the velocity constraint, there is already a violation in the position constraint. We call this violation position drift. What we achieve is stopping the two bodies from penetrating deeper (The penetration depth will stop growing). It might be fine for a slow-moving object as the position drift is not noticeable, but it will be a problem as the object moving faster. The animation below demonstrates what happens when we solve the velocity constraint. [caption id="attachment_38" align="alignnone" width="800"] So instead of purely solving the velocity constraint, we add a bias term to fix any violation that happens in position constraint. So what is the value of the bias? As mentioned before we need this bias to fix positional drift. So we want this bias to be in proportion to penetration depth. This method is called Baumgarte Stabilization and \(\beta\) is a baumgarte term. The right value for this term might differ for different scenarios. We need to tweak this value between 0 and 1 to find the right value that makes our simulation stable. Sequential Impulse If our world consists only of two rigid bodies and one contact constraint. Then the above method will work decently. But in most games, there are more than two rigid bodies. One body can collide and penetrate with two or more bodies. We need to satisfy all the contact constraint simultaneously. For a real-time application, solving all these constraints simultaneously is not feasible. Erin Catto proposes a practical solution, called sequential impulse. The idea here is similar to Project Gauss-Seidel. We calculate \(\lambda\) and \(\Delta V\) for each constraint one by one, from constraint one to constraint n(n = number of constraint). After we finish iterating through the constraints and calculate \(\Delta V\), we repeat the process from constraint one to constraint n until the specified number of iteration. This algorithm will converge to the actual solution.The more we repeat the process, the more accurate the result will be. In Box2d, Erin Catto set ten as the default for the number of iteration. Another thing to notice is that while we satisfy one constraint we might unintentionally satisfy another constraint. Say for example that we have two different contact constraint on the same rigid body. When we solve \(\dot{C1}\), we might incidentally make \(\dot{d2} >= 0\). Remember that equation(5), is a formula for \(\dot{C}: \dot{d} = 0\) not \(\dot{C}: \dot{d} >= 0\). So we don't need to apply it to \(\dot{C2}\) anymore. We can detect this by looking at the sign of \(\lambda\). If the sign of \(\lambda\) is negative, that means the constraint is already satisfied. If we use this negative lambda as an impulse, it means we pull it closer instead of pushing it apart. It is fine for individual \(\lambda\) to be negative. But, we need to make sure the accumulation of \(\lambda\) is not negative. In each iteration, we add the current lambda to normalImpulseSum. Then we clamp the normalImpulseSum between 0 and positive infinity. The actual Lagrangian multiplier that we will use to calculate the impulse is the difference between the new normalImpulseSum and the previous normalImpulseSum Restitution Okay, now we have successfully resolve contact penetration in our physics engine. But what about simulating objects that bounce when a collision happens. The property to bounce when a collision happens is called restitution. The coefficient of restitution denoted \(C_{r}\), is the ratio of the parting speed after the collision and the closing speed before the collision. The coefficient of restitution only affects the velocity along the normal direction. So we need to do the dot operation with the normal vector. Notice that in this specific case the \(V_{initial}\) is similar to JV. If we look back at our constraint above, we set \(\dot{d}\) to zero because we assume that the object does not bounce back(\(C_{r}=0\)).So, if \(C_{r} != 0\), instead of 0, we can modify our constraint so the desired velocity is \(V_{final}\). We can merge our old bias term with the restitution term to get a new bias value. // init constraint // Calculate J(M^-1)(J^T). This term is constant so we can calculate this first for (int i = 0; i < constraint->numContactPoint; i++) { ftContactPointConstraint *pointConstraint = &constraint->pointConstraint; pointConstraint->r1 = manifold->contactPoints.r1 - (bodyA->transform.center + bodyA->centerOfMass); pointConstraint->r2 = manifold->contactPoints.r2 - (bodyB->transform.center + bodyB->centerOfMass); real kNormal = bodyA->inverseMass + bodyB->inverseMass; // Calculate r X normal real rnA = pointConstraint->r1.cross(constraint->normal); real rnB = pointConstraint->r2.cross(constraint->normal); // Calculate J(M^-1)(J^T). kNormal += (bodyA->inverseMoment * rnA * rnA + bodyB->inverseMoment * rnB * rnB); // Save inverse of J(M^-1)(J^T). pointConstraint->normalMass = 1 / kNormal; pointConstraint->positionBias = m_option.baumgarteCoef * manifold->penetrationDepth; ftVector2 vA = bodyA->velocity; ftVector2 vB = bodyB->velocity; real wA = bodyA->angularVelocity; real wB = bodyB->angularVelocity; ftVector2 dv = (vB + pointConstraint->r2.invCross(wB) - vA - pointConstraint->r1.invCross(wA)); //Calculate JV real jnV = dv.dot(constraint->normal pointConstraint->restitutionBias = -restitution * (jnV + m_option.restitutionSlop); } // solve constraint while (numIteration > 0) { for (int i = 0; i < m_constraintGroup.nConstraint; ++i) { ftContactConstraint *constraint = &(m_constraintGroup.constraints); int32 bodyIDA = constraint->bodyIDA; int32 bodyIDB = constraint->bodyIDB; ftVector2 normal = constraint->normal; ftVector2 tangent = normal.tangent(); for (int j = 0; j < constraint->numContactPoint; ++j) { ftContactPointConstraint *pointConstraint = &(constraint->pointConstraint[j]); ftVector2 vA = m_constraintGroup.velocities[bodyIDA]; ftVector2 vB = m_constraintGroup.velocities[bodyIDB]; real wA = m_constraintGroup.angularVelocities[bodyIDA]; real wB = m_constraintGroup.angularVelocities[bodyIDB]; //Calculate JV. (jnV = JV, dv = derivative of d, JV = derivative(d) dot normal)) ftVector2 dv = (vB + pointConstraint->r2.invCross(wB) - vA - pointConstraint->r1.invCross(wA)); real jnV = dv.dot(normal); //Calculate Lambda ( lambda real nLambda = (-jnV + pointConstraint->positionBias / dt + pointConstraint->restitutionBias) * pointConstraint->normalMass; // Add lambda to normalImpulse and clamp real oldAccumI = pointConstraint->nIAcc; pointConstraint->nIAcc += nLambda; if (pointConstraint->nIAcc < 0) { pointConstraint->nIAcc = 0; } // Find real lambda real I = pointConstraint->nIAcc - oldAccumI; // Calculate linear impulse ftVector2 nLinearI = normal * I; // Calculate angular impulse real rnA = pointConstraint->r1.cross(normal); real rnB = pointConstraint->r2.cross(normal); real nAngularIA = rnA * I; real nAngularIB = rnB * I; // Apply linear impulse m_constraintGroup.velocities[bodyIDA] -= constraint->invMassA * nLinearI; m_constraintGroup.velocities[bodyIDB] += constraint->invMassB * nLinearI; // Apply angular impulse m_constraintGroup.angularVelocities[bodyIDA] -= constraint->invMomentA * nAngularIA; m_constraintGroup.angularVelocities[bodyIDB] += constraint->invMomentB * nAngularIB; } } --numIteration; } General Step to Solve Constraint In this article, we have learned how to solve contact penetration by defining it as a constraint and solve it. But this framework is not only used to solve contact penetration. We can do many more cool things with constraints like for example implementing hinge joint, pulley, spring, etc. So this is the step-by-step of constraint resolution: Define the constraint in the form \(\dot{C}: JV + b = 0\). V is always \(\begin{bmatrix} \vec{v1} \\ w1 \\ \vec{v2} \\ w2\end{bmatrix}\) for every constraint. So we need to find J or the Jacobian Matrix for that specific constraint. Decide the number of iteration for the sequential impulse. Next find the Lagrangian multiplier by inserting velocity, mass, and the Jacobian Matrix into this equation: Do step 3 for each constraint, and repeat the process as much as the number of iteration. Clamp the Lagrangian multiplier if needed. This marks the end of this article. Feel free to ask if something is still unclear. And please inform me if there are inaccuracies in my article. Thank you for reading. NB: Box2d use sequential impulse, but does not use baumgarte stabilization anymore. It uses full NGS to resolve the position drift. Chipmunk still use baumgarte stabilization. References Allen Chou's post on Constraint Resolution A Unified Framework for Rigid Body Dynamics An Introduction to Physically Based Modeling: Constrained Dynamics Erin Catto's Box2d and presentation on constraint resolution Falton Debug Visualizer 18_01_2018 22_40_12.mp4 equation.svg
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

GameDev.net is your game development community. Create an account for your GameDev Portfolio and participate in the largest developer community in the games industry.

Sign me up!