Jump to content
  • Advertisement

Search the Community

Showing results for tags 'Java'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Audio
    • Music and Sound FX
  • Business
    • Business and Law
    • Career Development
    • Production and Management
  • Game Design
    • Game Design and Theory
    • Writing for Games
    • UX for Games
  • Industry
    • Interviews
    • Event Coverage
  • Programming
    • Artificial Intelligence
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Engines and Middleware
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
  • Archive

Categories

  • Audio
  • Visual Arts
  • Programming
  • Writing

Categories

  • Game Dev Loadout
  • Game Dev Unchained

Categories

  • Game Developers Conference
    • GDC 2017
    • GDC 2018
  • Power-Up Digital Games Conference
    • PDGC I: Words of Wisdom
    • PDGC II: The Devs Strike Back
    • PDGC III: Syntax Error

Forums

  • Audio
    • Music and Sound FX
  • Business
    • Games Career Development
    • Production and Management
    • Games Business and Law
  • Game Design
    • Game Design and Theory
    • Writing for Games
  • Programming
    • Artificial Intelligence
    • Engines and Middleware
    • General and Gameplay Programming
    • Graphics and GPU Programming
    • Math and Physics
    • Networking and Multiplayer
  • Visual Arts
    • 2D and 3D Art
    • Critique and Feedback
  • Community
    • GameDev Challenges
    • GDNet+ Member Forum
    • GDNet Lounge
    • GDNet Comments, Suggestions, and Ideas
    • Coding Horrors
    • Your Announcements
    • Hobby Project Classifieds
    • Indie Showcase
    • Article Writing
  • Affiliates
    • NeHe Productions
    • AngelCode
  • Topical
    • Virtual and Augmented Reality
    • News
  • Workshops
    • C# Workshop
    • CPP Workshop
    • Freehand Drawing Workshop
    • Hands-On Interactive Game Development
    • SICP Workshop
    • XNA 4.0 Workshop
  • Archive
    • Topical
    • Affiliates
    • Contests
    • Technical
  • GameDev Challenges's Topics
  • For Beginners's Forum

Calendars

  • Community Calendar
  • Games Industry Events
  • Game Jams
  • GameDev Challenges's Schedule

Blogs

There are no results to display.

There are no results to display.

Product Groups

  • Advertisements
  • GameDev Gear

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


About Me


Website


Role


Twitter


Github


Twitch


Steam

Found 107 results

  1. So im starting to build game for me and my friend to play but if it ends up good then i want it to be easily expandable. My question is ... Where do i learn how to set up a server? how to run code on my server? how do you open your server to the outside world. Not only your home/pc. I want to program my server in java because i'm fairly comfortable with java. I've decided i want a tcp server. Do i need separate server to handle log-ins, registers etc.? I've done a lot of googling and i still can't find any decent tutorials.
  2. LukasIrzl

    Tales of Vastor - Progress #5

    Tales of Vastor - Progress #5 Content What's done? What's next? Updated alpha version What's done? Cloud shadows on world map You may have noticed on Twitter that the world map in now covered with cloud shadows. It definitely looks better now. What do you think? New wand for the mage class The alpha version focused on the knight as a playable character. In order to balance Tales of Vastor for other classes as well, the mage got a new weapon - the iron wand. This mystic weapon is a special one, because it is only given to mages of higher ranks. If you got lucky, you may get one as well. Optimized game state handling Until now, there was no information, whether the game state is used or not. In order to make it more transparent, the players name will be shown. Additionally, to the players name, there is a confirm dialog, if you want to override the previously saved game state. Fixed button positioning in main menu A friend on mine told me, that there was an issue with resolutions > 1920 x 1080. In the main menu, the menu buttons were not visible, preventing players to start a game. Now, the buttons will be shown in the lower left corner and will be visible regardless of your resolution. Gold display in inventory Of course, gold is one of the most important things in Tales of Vastor. In order to know the amount of gold collected, there is a gold field in the inventory. What's next? more bandit animations more bandit boss animations a new playable character Update alpha version I created a new alpha version as well today. It contains a few bug fixes and new features. Be sure to check out the last progress updates to know, what was added. Get the alpha here. If you have feedback, I would really appreciate reading it. You can contact me via mail or direct message whenever you want. Be sure to take a look at Twitter as well, since there will be more frequent updates. Thank you!
  3. Introducing Jumpaï! A game made using LibGDX. It's been 21 months the game is in development and we just released version 0.3! It's an online game, there's a server running at http://jumpai.net/ and everyone can join! Registering is easy, username password and you are good.The point of the game is to make your own level! There's an easy to use, integrated editor allow you to make your levels and they same automatically on the cloud. You can then join them online to play with your friends. A lot of cool mechanics, portals, powerups, items... Check it out! Trailer: Also, you can join us on discord https://discord.gg/R4ZafEw Screenshots:
  4. I recently transferred to a new college that teaches Java as part of it's Computer Science core classes. I've heard Java isn't that great when it comes to making games, and I was wondering what its weaknesses are compared to more popular game-creation languages, and if any of its weaknesses have a work-around of some sort. Specifically, I'm interested in Artificial Intelligence and Procedural Generation.
  5. Nico Aaron Studt

    Tamago 2

    https://play.google.com/store/apps/details?id=com.copycat.tamago2
  6. Hi, I want to present my game called "Stick Bunny" – arrcade game in which you have to help Bunny to go from one platform to another. Download from here: https://play.google.com/store/apps/details?id=com.threemgames.stickbunny Youtube video gameplay: Funny Bunny wants to go from one platform to another. Use stick and help Bunny. Stick can increase the length. Be careful, if the stick is too long Bunny will be knocked and if it is too short Bunny will fall down. Try to go as far as you can. Collect carrots and exchane them for new characters of Bunny. Tap the screen to change size of the stick. Are you ready to reach 100 platforms or mayby you want to go even farther? So tap the screen, join platforms with sticks, and collect carrots. It is FREE! I am waiting for your comments. Please, give me feedback. If you notice any bugs please tell me. Thanks !
  7. Today, I finally finished the following features : Add new solid voxels at the selected position Destroy voxels at the selected position Generate chunks on the fly Remove chunks on the fly Here is a video demonstrating those features :
  8. All I want to do is create a java application that executes and performs server side polling on a turn based game after authentication to an address space(java web hosting service).I'm a couple years away from writing web applications that ran through a remote server, but leveraged my local tomcat server to perform the server side logic. First question, can tomcat/glassfish be used to generate non-web based applications? Secondly.That being said, is it sufficient to simply use glassfish/tomcat to connect to a java-web hosting service(address space)? And is a web-hosting service simply an address space that runs java application code? Regards, CE
  9. For more information and updates about the game, which is a voxel colony simulation / survival, please subscribe to r/CheesyGames. World Generation This is a simple world made of chunks of 32³ voxels. The world itself is not static : as you can see on the top of the image, chunks only exist if there is at least one solid voxel in them. In other words, the world is dynamic and can contain as many chunks as the player's computer can handle. In this particular screenshot, the world is generated with the simple vectorial gradient equation that I invented in high school but which I suppose already existed. Here's the basic equation : \(\overrightarrow{ \textit{voxel value} } = \frac{ \overrightarrow{\textit{position} } \cdot \overrightarrow{ \textit{gradient}}}{ \overrightarrow{\textit{gradient} } \cdot \overrightarrow{ \textit{gradient}} }\) That's the equation I came up with and remembered. The gradient * gradient can be simplified for the magnitude (length) of the gradient power squared. \(\overrightarrow{ \textit{voxel value} } = \frac{ \overrightarrow{\textit{position} } \cdot \overrightarrow{ \textit{gradient}}}{ \left \| \overrightarrow{ \textit{gradient}} \right \| ^{2} }\) In conclusion, this gives an N dimensional gradient which gives a single decimal number. Voxel Traversal Algorithm As for the voxel traversal algorithm, I decided to go with the most popular one, which was made by John Amanatides and Andrew Woo. As much as I like research papers, I also despise them because they lack simplicity, examples and full source code. That's why I had to google implementations of it and later on remembered that I had actually already implemented this algorithm a few years ago. Summary The simplest way to understand the algorithm is to imagine a line in an 3D world made of blocks. Which blocks does the line touch? Then, in which order are they touched based on the line's start and end positions? The goal is to traverse iteratively the blocks that are touched by the line . More simply, the logic of the algorithm can be summed making a distinction between the ray's direction's components. Those three define the importance of their axes in terms of how many blocks need to be traversed in what direction. Think of this with integers : two people are running to reach a goal; the fastest runs a 5 km/h, while the slowest runs at 1 km/h. For each time step, i.e. an hour, how many kilometers have each runner traveled? The ratio is 5 : 1, so, to merge the analogy, a ray would traverse each step 5 blocks on the X axis and 1 block on the Y axis. Of course, it's more complicated than that, as there are more parameters to it, especially because of exceptions such as what to do when each component is equal with one another? Implementation The first thing to know about my implementation is that each voxel index is centered within the voxel itself. In other words, the voxel at the position (0, 0, 0) starts at (-0.5, -0.5, -0.5) inclusively and ends at (0.5, 0.5, 0.5) exclusively. This is for a cube extent of 1, naturally. The original research paper doesn't work that way as it starts at the lowest corner, i.e. the voxel spans from (0, 0, 0) to (1, 1, 1). Without any further delay, here is the class for the VoxelRay : import com.cheesygames.colonysimulation.math.MathExt; import com.cheesygames.colonysimulation.math.vector.Vector3i; import com.cheesygames.colonysimulation.world.World; import com.jme3.math.Vector3f; import com.jme3.scene.plugins.blender.math.Vector3d; import java.util.function.Function; /** * Ray for ray casting inside a voxel world. Each voxel is considered as a cube within this ray. A ray consists of a starting position, a direction and a length. The voxel distance * is computed once the method {@link #rayCastLocal(double, Function, Vector3i)} or {@link #rayCast(double, Function)} is called. */ public class VoxelRay { private Vector3d m_start; private Vector3d m_offsettedStart; private Vector3d m_direction; private double m_length; private int m_voxelDistance; private boolean m_wasStopped; /** * Constructs an invalid {@link VoxelRay} as its direction and length are null. The setters must be called after constructing a {@link VoxelRay} with this constructors. */ public VoxelRay() { this.m_start = new Vector3d(); this.m_offsettedStart = new Vector3d(); this.m_direction = new Vector3d(); this.m_length = 0; } /** * Constructs a {@link VoxelRay} from two points : start and end. * * @param start The absolute starting position of the ray. * @param end The absolute ending position of the ray. */ public VoxelRay(Vector3d start, Vector3d end) { this.m_start = new Vector3d(start); this.m_offsettedStart = new Vector3d(); this.m_direction = end.subtract(start); this.m_length = m_direction.length(); this.m_direction.normalizeLocal(); } /** * Constructs a {@link VoxelRay} from two points : start and end. * * @param start The absolute starting position of the ray. * @param end The absolute ending position of the ray. */ public VoxelRay(Vector3f start, Vector3f end) { this.m_start = new Vector3d(start); this.m_offsettedStart = new Vector3d(); this.m_direction = new Vector3d(end).subtractLocal(m_start); this.m_length = m_direction.length(); this.m_direction.normalizeLocal(); } /** * Constructs a {@link VoxelRay} from a start, a direction and a length. * * @param start The absolute starting position of the ray. * @param direction The direction of the ray. Must be normalized. * @param length The length of the ray. */ public VoxelRay(Vector3d start, Vector3d direction, double length) { this.m_start = new Vector3d(start); this.m_offsettedStart = new Vector3d(); this.m_direction = new Vector3d(direction); this.m_length = length; } /** * Constructs a {@link VoxelRay} from a start, a direction and a length. * * @param start The absolute starting position of the ray. * @param direction The direction of the ray. Must be normalized. * @param length The length of the ray. */ public VoxelRay(Vector3f start, Vector3f direction, float length) { this.m_start = new Vector3d(start); this.m_offsettedStart = new Vector3d(); this.m_direction = new Vector3d(direction); this.m_length = length; } /** * Casts the ray from its starting position towards its direction whilst keeping in mind its length. A lambda parameter is supplied and called each time a voxel is traversed. * This allows the lambda to stop anytime the algorithm to continue its loop. * * @param onTraversingVoxel The operation to execute when traversing a voxel. This method called the same number of times as the value of {@link #getVoxelDistance()}. The * supplied {@link Vector3i} parameter is not a new instance but a local instance, so it is a reference. The return value {@link Boolean} defines if * the algorithm should stop. * * @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf">A Fast Voxel Traversal Algorithm</a> */ public void rayCast(Function<Vector3i, Boolean> onTraversingVoxel) { rayCastLocal(World.VOXEL_HALF_EXTENT, onTraversingVoxel, new Vector3i()); } /** * Casts the ray from its starting position towards its direction whilst keeping in mind its length. A lambda parameter is supplied and called each time a voxel is traversed. * This allows the lambda to stop anytime the algorithm to continue its loop. * * @param voxelHalfExtent The half extent (radius) of a voxel. * @param onTraversingVoxel The operation to execute when traversing a voxel. This method called the same number of times as the value of {@link #getVoxelDistance()}. The * supplied {@link Vector3i} parameter is not a new instance but a local instance, so it is a reference. The return value {@link Boolean} defines if * the algorithm should stop. * * @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf">A Fast Voxel Traversal Algorithm</a> */ public void rayCast(double voxelHalfExtent, Function<Vector3i, Boolean> onTraversingVoxel) { rayCastLocal(voxelHalfExtent, onTraversingVoxel, new Vector3i()); } /** * Casts the ray from its starting position towards its direction whilst keeping in mind its length. A lambda parameter is supplied and called each time a voxel is traversed. * This allows the lambda to stop anytime the algorithm to continue its loop. * <p> * This method is local because the parameter voxelIndex is locally changed to avoid creating a new instance of {@link Vector3i}. * * @param onTraversingVoxel The operation to execute when traversing a voxel. This method called the same number of times as the value of {@link #getVoxelDistance()}. The * supplied {@link Vector3i} parameter is not a new instance but a local instance, so it is a reference. The return value {@link Boolean} defines if * the algorithm should stop. * @param voxelIndex The voxel index to locally modify in order to traverse voxels. This parameter exists simply to avoid creating a new {@link Vector3i} instance. * * @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf">A Fast Voxel Traversal Algorithm</a> */ public void rayCastLocal(Function<Vector3i, Boolean> onTraversingVoxel, Vector3i voxelIndex) { rayCastLocal(World.VOXEL_HALF_EXTENT, onTraversingVoxel, voxelIndex); } /** * Casts the ray from its starting position towards its direction whilst keeping in mind its length. A lambda parameter is supplied and called each time a voxel is traversed. * This allows the lambda to stop anytime the algorithm to continue its loop. * <p> * This method is local because the parameter voxelIndex is locally changed to avoid creating a new instance of {@link Vector3i}. * * @param voxelHalfExtent The half extent (radius) of a voxel. * @param onTraversingVoxel The operation to execute when traversing a voxel. This method called the same number of times as the value of {@link #getVoxelDistance()}. The * supplied {@link Vector3i} parameter is not a new instance but a local instance, so it is a reference. The return value {@link Boolean} defines if * the algorithm should stop. * @param voxelIndex The voxel index to locally modify in order to traverse voxels. This parameter exists simply to avoid creating a new {@link Vector3i} instance. * * @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf">A Fast Voxel Traversal Algorithm</a> */ public void rayCastLocal(double voxelHalfExtent, Function<Vector3i, Boolean> onTraversingVoxel, Vector3i voxelIndex) { assert !Double.isNaN(voxelHalfExtent); assert !Double.isNaN(m_start.x); assert !Double.isNaN(m_start.y); assert !Double.isNaN(m_start.z); assert !Double.isNaN(m_direction.x); assert !Double.isNaN(m_direction.y); assert !Double.isNaN(m_direction.z); assert !Double.isNaN(m_length); m_wasStopped = false; final double voxelExtent = voxelHalfExtent * 2; // This id of the first/current voxel hit by the ray. m_offsettedStart.set(m_start).addLocal(voxelHalfExtent, voxelHalfExtent, voxelHalfExtent); VoxelWorldUtils.getVoxelIndexNoOffsetLocal(voxelExtent, m_offsettedStart, voxelIndex); computeVoxelDistance(voxelExtent, voxelIndex); assert !Double.isNaN(m_voxelDistance); // In which direction the voxel ids are incremented. int stepX = (int) MathExt.getSignZeroPositive(m_direction.x); int stepY = (int) MathExt.getSignZeroPositive(m_direction.y); int stepZ = (int) MathExt.getSignZeroPositive(m_direction.z); // Distance along the ray to the next voxel border from the current position (tMaxX, tMaxY, tMaxZ). double nextVoxelBoundaryX = (voxelIndex.x + (MathExt.getNegativeSign(stepX) + 1)) * voxelExtent; double nextVoxelBoundaryY = (voxelIndex.y + (MathExt.getNegativeSign(stepY) + 1)) * voxelExtent; double nextVoxelBoundaryZ = (voxelIndex.z + (MathExt.getNegativeSign(stepZ) + 1)) * voxelExtent; // tMaxX, tMaxY, tMaxZ -- distance until next intersection with voxel-border // the value of t at which the ray crosses the first vertical voxel boundary double tMaxX = (m_direction.x != 0) ? (nextVoxelBoundaryX - m_offsettedStart.x) / m_direction.x : Double.MAX_VALUE; double tMaxY = (m_direction.y != 0) ? (nextVoxelBoundaryY - m_offsettedStart.y) / m_direction.y : Double.MAX_VALUE; double tMaxZ = (m_direction.z != 0) ? (nextVoxelBoundaryZ - m_offsettedStart.z) / m_direction.z : Double.MAX_VALUE; // tDeltaX, tDeltaY, tDeltaZ -- // how far along the ray we must move for the horizontal component to equal the width of a voxel // the direction in which we traverse the grid // can only be FLT_MAX if we never go in that direction double tDeltaX = (m_direction.x != 0) ? stepX * voxelExtent / m_direction.x : Double.MAX_VALUE; double tDeltaY = (m_direction.y != 0) ? stepY * voxelExtent / m_direction.y : Double.MAX_VALUE; double tDeltaZ = (m_direction.z != 0) ? stepZ * voxelExtent / m_direction.z : Double.MAX_VALUE; if (onTraversingVoxel.apply(voxelIndex)) { m_wasStopped = true; return; } int traversedVoxelCount = 0; while (++traversedVoxelCount < m_voxelDistance) { if (tMaxX < tMaxY && tMaxX < tMaxZ) { voxelIndex.x += stepX; tMaxX += tDeltaX; } else if (tMaxY < tMaxZ) { voxelIndex.y += stepY; tMaxY += tDeltaY; } else { voxelIndex.z += stepZ; tMaxZ += tDeltaZ; } if (onTraversingVoxel.apply(voxelIndex)) { m_wasStopped = true; break; } } } /** * Computes the voxel distance, a.k.a. the number of voxel to traverse, for the ray cast. * * @param voxelExtent The extent of a voxel, which is the equivalent for a cube of a sphere's radius. * @param startIndex The starting position's index. */ private void computeVoxelDistance(double voxelExtent, Vector3i startIndex) { m_voxelDistance = 1 + MathExt.abs(VoxelWorldUtils.getVoxelIndexNoOffset(voxelExtent, m_offsettedStart.x + m_direction.x * m_length) - startIndex.x) + MathExt.abs(VoxelWorldUtils.getVoxelIndexNoOffset(voxelExtent, m_offsettedStart.y + m_direction.y * m_length) - startIndex.y) + MathExt.abs(VoxelWorldUtils.getVoxelIndexNoOffset(voxelExtent, m_offsettedStart.z + m_direction.z * m_length) - startIndex.z); } public Vector3d getStart() { return m_start; } public Vector3d getDirection() { return m_direction; } public double getLength() { return m_length; } public int getVoxelDistance() { return m_voxelDistance; } public void setStart(Vector3d start) { m_start.set(start); } public void setStart(Vector3f start) { m_start.set(start); } /** * Sets the direction. * * @param direction The direction to set to the ray. Must be normalized. */ public void setDirection(Vector3d direction) { m_direction.set(direction); } /** * Sets the direction. * * @param direction The direction to set to the ray. Must be normalized. */ public void setDirection(Vector3f direction) { m_direction.set(direction); } /** * Sets the length of the ray. * * @param length The new length of the ray. Must be positive. */ public void setLength(double length) { m_length = length; } /** * Sets the end position of the ray, which is not a real variable but a way to set the direction and the length at the same time. The start position does matter for this * method. * * @param end Where the ray ends. */ public void setEnd(Vector3d end) { m_direction.set(end).subtractLocal(m_start); m_length = m_direction.length(); m_direction.normalizeLocal(); } /** * Gets if the voxel ray cast was stopped by the "onTraversingVoxel" method call. * * @return True if the voxel ray cast was stopped by the "onTraversingVoxel" method call, false otherwise. */ public boolean wasStopped() { return m_wasStopped; } } Here are the external static methods : /** * Gets the voxel index of the specified position. This method suppose that the parameter position is already offsetted with + voxel half extent. This method local because the * supplied voxel index will be locally modified and returned. * * @param voxelExtent The extent of a voxel, which is the equivalent to a cube of a sphere's diameter. * @param position The position to get the voxel index from. Must already be offsetted with + voxel half extent * @param voxelIndex Where to store the voxel index. * * @return The voxel index parameter that is set to the supplied position's voxel index. */ public static Vector3i getVoxelIndexNoOffsetLocal(double voxelExtent, Vector3d position, Vector3i voxelIndex) { return voxelIndex.set(getVoxelIndexNoOffset(voxelExtent, position.x), getVoxelIndexNoOffset(voxelExtent, position.y), getVoxelIndexNoOffset(voxelExtent, position.z)); } /** * Gets the sign of the supplied number. The method being "zero position" means that the sign of zero is 1. * * @param number The number to get the sign from. * * @return The number's sign. */ public static long getSignZeroPositive(double number) { assert !Double.isNaN(number); return getNegativeSign(number) | 1; } /** * Gets the negative sign of the supplied number. So, in other words, if the number is negative, -1 is returned but if the number is positive or zero, then zero is returned. It * does not check if the parameter is NaN. * * @param number The number to get its negative sign. * * @return -1 if the number is negative, 0 otherwise. */ public static long getNegativeSign(double number) { assert !Double.isNaN(number); return Double.doubleToRawLongBits(number) >> BIT_COUNT_EXCLUDING_SIGN_64; } The important parts to adjust the algorithm to fit my voxel boundaries are the following : m_offsettedStart.set(m_start).addLocal(voxelHalfExtent, voxelHalfExtent, voxelHalfExtent); It is mandatory to add the half extent to the starting position. double nextVoxelBoundaryX = (voxelIndex.x + (MathExt.getNegativeSign(stepX) + 1)) * voxelExtent; double nextVoxelBoundaryY = (voxelIndex.y + (MathExt.getNegativeSign(stepY) + 1)) * voxelExtent; double nextVoxelBoundaryZ = (voxelIndex.z + (MathExt.getNegativeSign(stepZ) + 1)) * voxelExtent; What the MathExt method call does could be programmed as : (stepX >= 0 ? 1 : 0). I don't know how to express how it is delightful when everything starts to fit and work properly :') Here are some screenshots :
  10. thecheeselover

    VoxelTraversal-FaceSelect-1.png

  11. thecheeselover

    VoxelTraversal-FaceSelect-4.png

  12. thecheeselover

    VoxelTraversal-FaceSelect-3.png

  13. thecheeselover

    VoxelTraversal-FaceSelect-2.png

  14. thecheeselover

    Banner-VoxelTraversal-FaceSelect.png

  15. thecheeselover

    Marching cubes

    Subscribe to our subreddit to get all the updates from the team! I have had difficulties recently with the Marching Cubes algorithm, mainly because the principal source of information on the subject was kinda vague and incomplete to me. I need a lot of precision to understand something complicated Anyhow, after a lot of struggles, I have been able to code in Java a less hardcoded program than the given source because who doesn't like the cuteness of Java compared to the mean looking C++? Oh and by hardcoding, I mean something like this : cubeindex = 0; if (grid.val[0] < isolevel) cubeindex |= 1; if (grid.val[1] < isolevel) cubeindex |= 2; if (grid.val[2] < isolevel) cubeindex |= 4; if (grid.val[3] < isolevel) cubeindex |= 8; if (grid.val[4] < isolevel) cubeindex |= 16; if (grid.val[5] < isolevel) cubeindex |= 32; if (grid.val[6] < isolevel) cubeindex |= 64; if (grid.val[7] < isolevel) cubeindex |= 128; By no mean I am saying that my code is better or more performant. It's actually ugly. However, I absolutely loathe hardcoding. Here's the result with a scalar field generated using the coherent noise library joise : Edit : I've finally decided that I would share the code of my Java marching cubes algorithm interpretation. I was kind of possessive and didn't want people to copy my code. However, after thinking about it, for multiple algorithms, I had to translate or adapt open source code from someone else. It's so much easier to understand that way, mostly because research papers for algorithms are usually incomplete in terms of code and examples. Also, even if someone copies textually my everything that I will post here, it's not a little piece of code that would be a game changer in an application, even if it's a critical one because if it is, then those people would do everything to make it work. What I will post here is in Java 9 and uses the jMonkey Engine 3.1 (a little customized but that doesn't matter). I also changed the way the tables data are saved as variables, so that it's more convenient to access them. This result in the removal of insignifiant zeros. MarchingCubesTable.java : /** * Contains the lookup tables for the marching cube algorithm. Those are the edge and the triangle tables. */ class MarchingCubesTables { public static final int EDGE_BITS = 12; public static final int[] EDGE_TABLE = { 0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 }; public static final int[] EDGE_FIRST_VERTEX = { 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3 }; public static final int[] EDGE_SECOND_VERTEX = { 1, 2, 3, 0, 5, 6, 7, 4, 4, 5, 6, 7 }; public static final int[][] TRIANGLE_TABLE = { {}, { 0, 8, 3 }, { 0, 1, 9 }, { 1, 8, 3, 9, 8, 1 }, { 1, 2, 10 }, { 0, 8, 3, 1, 2, 10 }, { 9, 2, 10, 0, 2, 9 }, { 2, 8, 3, 2, 10, 8, 10, 9, 8 }, { 3, 11, 2 }, { 0, 11, 2, 8, 11, 0 }, { 1, 9, 0, 2, 3, 11 }, { 1, 11, 2, 1, 9, 11, 9, 8, 11 }, { 3, 10, 1, 11, 10, 3 }, { 0, 10, 1, 0, 8, 10, 8, 11, 10 }, { 3, 9, 0, 3, 11, 9, 11, 10, 9 }, { 9, 8, 10, 10, 8, 11 }, { 4, 7, 8 }, { 4, 3, 0, 7, 3, 4 }, { 0, 1, 9, 8, 4, 7 }, { 4, 1, 9, 4, 7, 1, 7, 3, 1 }, { 1, 2, 10, 8, 4, 7 }, { 3, 4, 7, 3, 0, 4, 1, 2, 10 }, { 9, 2, 10, 9, 0, 2, 8, 4, 7 }, { 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4 }, { 8, 4, 7, 3, 11, 2 }, { 11, 4, 7, 11, 2, 4, 2, 0, 4 }, { 9, 0, 1, 8, 4, 7, 2, 3, 11 }, { 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1 }, { 3, 10, 1, 3, 11, 10, 7, 8, 4 }, { 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4 }, { 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3 }, { 4, 7, 11, 4, 11, 9, 9, 11, 10 }, { 9, 5, 4 }, { 9, 5, 4, 0, 8, 3 }, { 0, 5, 4, 1, 5, 0 }, { 8, 5, 4, 8, 3, 5, 3, 1, 5 }, { 1, 2, 10, 9, 5, 4 }, { 3, 0, 8, 1, 2, 10, 4, 9, 5 }, { 5, 2, 10, 5, 4, 2, 4, 0, 2 }, { 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8 }, { 9, 5, 4, 2, 3, 11 }, { 0, 11, 2, 0, 8, 11, 4, 9, 5 }, { 0, 5, 4, 0, 1, 5, 2, 3, 11 }, { 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5 }, { 10, 3, 11, 10, 1, 3, 9, 5, 4 }, { 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10 }, { 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3 }, { 5, 4, 8, 5, 8, 10, 10, 8, 11 }, { 9, 7, 8, 5, 7, 9 }, { 9, 3, 0, 9, 5, 3, 5, 7, 3 }, { 0, 7, 8, 0, 1, 7, 1, 5, 7 }, { 1, 5, 3, 3, 5, 7 }, { 9, 7, 8, 9, 5, 7, 10, 1, 2 }, { 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3 }, { 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2 }, { 2, 10, 5, 2, 5, 3, 3, 5, 7 }, { 7, 9, 5, 7, 8, 9, 3, 11, 2 }, { 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11 }, { 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7 }, { 11, 2, 1, 11, 1, 7, 7, 1, 5 }, { 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11 }, { 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0 }, { 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0 }, { 11, 10, 5, 7, 11, 5 }, { 10, 6, 5 }, { 0, 8, 3, 5, 10, 6 }, { 9, 0, 1, 5, 10, 6 }, { 1, 8, 3, 1, 9, 8, 5, 10, 6 }, { 1, 6, 5, 2, 6, 1 }, { 1, 6, 5, 1, 2, 6, 3, 0, 8 }, { 9, 6, 5, 9, 0, 6, 0, 2, 6 }, { 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8 }, { 2, 3, 11, 10, 6, 5 }, { 11, 0, 8, 11, 2, 0, 10, 6, 5 }, { 0, 1, 9, 2, 3, 11, 5, 10, 6 }, { 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11 }, { 6, 3, 11, 6, 5, 3, 5, 1, 3 }, { 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6 }, { 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9 }, { 6, 5, 9, 6, 9, 11, 11, 9, 8 }, { 5, 10, 6, 4, 7, 8 }, { 4, 3, 0, 4, 7, 3, 6, 5, 10 }, { 1, 9, 0, 5, 10, 6, 8, 4, 7 }, { 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4 }, { 6, 1, 2, 6, 5, 1, 4, 7, 8 }, { 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7 }, { 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6 }, { 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9 }, { 3, 11, 2, 7, 8, 4, 10, 6, 5 }, { 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11 }, { 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6 }, { 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6 }, { 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6 }, { 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11 }, { 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7 }, { 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9 }, { 10, 4, 9, 6, 4, 10 }, { 4, 10, 6, 4, 9, 10, 0, 8, 3 }, { 10, 0, 1, 10, 6, 0, 6, 4, 0 }, { 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10 }, { 1, 4, 9, 1, 2, 4, 2, 6, 4 }, { 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4 }, { 0, 2, 4, 4, 2, 6 }, { 8, 3, 2, 8, 2, 4, 4, 2, 6 }, { 10, 4, 9, 10, 6, 4, 11, 2, 3 }, { 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6 }, { 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10 }, { 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1 }, { 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3 }, { 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1 }, { 3, 11, 6, 3, 6, 0, 0, 6, 4 }, { 6, 4, 8, 11, 6, 8 }, { 7, 10, 6, 7, 8, 10, 8, 9, 10 }, { 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10 }, { 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0 }, { 10, 6, 7, 10, 7, 1, 1, 7, 3 }, { 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7 }, { 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9 }, { 7, 8, 0, 7, 0, 6, 6, 0, 2 }, { 7, 3, 2, 6, 7, 2 }, { 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7 }, { 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7 }, { 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11 }, { 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1 }, { 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6 }, { 0, 9, 1, 11, 6, 7 }, { 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0 }, { 7, 11, 6 }, { 7, 6, 11 }, { 3, 0, 8, 11, 7, 6 }, { 0, 1, 9, 11, 7, 6 }, { 8, 1, 9, 8, 3, 1, 11, 7, 6 }, { 10, 1, 2, 6, 11, 7 }, { 1, 2, 10, 3, 0, 8, 6, 11, 7 }, { 2, 9, 0, 2, 10, 9, 6, 11, 7 }, { 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8 }, { 7, 2, 3, 6, 2, 7 }, { 7, 0, 8, 7, 6, 0, 6, 2, 0 }, { 2, 7, 6, 2, 3, 7, 0, 1, 9 }, { 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6 }, { 10, 7, 6, 10, 1, 7, 1, 3, 7 }, { 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8 }, { 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7 }, { 7, 6, 10, 7, 10, 8, 8, 10, 9 }, { 6, 8, 4, 11, 8, 6 }, { 3, 6, 11, 3, 0, 6, 0, 4, 6 }, { 8, 6, 11, 8, 4, 6, 9, 0, 1 }, { 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6 }, { 6, 8, 4, 6, 11, 8, 2, 10, 1 }, { 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6 }, { 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9 }, { 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3 }, { 8, 2, 3, 8, 4, 2, 4, 6, 2 }, { 0, 4, 2, 4, 6, 2 }, { 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8 }, { 1, 9, 4, 1, 4, 2, 2, 4, 6 }, { 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1 }, { 10, 1, 0, 10, 0, 6, 6, 0, 4 }, { 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3 }, { 10, 9, 4, 6, 10, 4 }, { 4, 9, 5, 7, 6, 11 }, { 0, 8, 3, 4, 9, 5, 11, 7, 6 }, { 5, 0, 1, 5, 4, 0, 7, 6, 11 }, { 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5 }, { 9, 5, 4, 10, 1, 2, 7, 6, 11 }, { 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5 }, { 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2 }, { 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6 }, { 7, 2, 3, 7, 6, 2, 5, 4, 9 }, { 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7 }, { 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0 }, { 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8 }, { 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7 }, { 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4 }, { 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10 }, { 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10 }, { 6, 9, 5, 6, 11, 9, 11, 8, 9 }, { 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5 }, { 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11 }, { 6, 11, 3, 6, 3, 5, 5, 3, 1 }, { 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6 }, { 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10 }, { 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5 }, { 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3 }, { 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2 }, { 9, 5, 6, 9, 6, 0, 0, 6, 2 }, { 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8 }, { 1, 5, 6, 2, 1, 6 }, { 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6 }, { 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0 }, { 0, 3, 8, 5, 6, 10 }, { 10, 5, 6 }, { 11, 5, 10, 7, 5, 11 }, { 11, 5, 10, 11, 7, 5, 8, 3, 0 }, { 5, 11, 7, 5, 10, 11, 1, 9, 0 }, { 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1 }, { 11, 1, 2, 11, 7, 1, 7, 5, 1 }, { 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11 }, { 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7 }, { 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2 }, { 2, 5, 10, 2, 3, 5, 3, 7, 5 }, { 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5 }, { 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2 }, { 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2 }, { 1, 3, 5, 3, 7, 5 }, { 0, 8, 7, 0, 7, 1, 1, 7, 5 }, { 9, 0, 3, 9, 3, 5, 5, 3, 7 }, { 9, 8, 7, 5, 9, 7 }, { 5, 8, 4, 5, 10, 8, 10, 11, 8 }, { 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0 }, { 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5 }, { 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4 }, { 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8 }, { 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11 }, { 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5 }, { 9, 4, 5, 2, 11, 3 }, { 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4 }, { 5, 10, 2, 5, 2, 4, 4, 2, 0 }, { 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9 }, { 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2 }, { 8, 4, 5, 8, 5, 3, 3, 5, 1 }, { 0, 4, 5, 1, 0, 5 }, { 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5 }, { 9, 4, 5 }, { 4, 11, 7, 4, 9, 11, 9, 10, 11 }, { 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11 }, { 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11 }, { 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4 }, { 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2 }, { 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3 }, { 11, 7, 4, 11, 4, 2, 2, 4, 0 }, { 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4 }, { 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9 }, { 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7 }, { 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10 }, { 1, 10, 2, 8, 7, 4 }, { 4, 9, 1, 4, 1, 7, 7, 1, 3 }, { 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1 }, { 4, 0, 3, 7, 4, 3 }, { 4, 8, 7 }, { 9, 10, 8, 10, 11, 8 }, { 3, 0, 9, 3, 9, 11, 11, 9, 10 }, { 0, 1, 10, 0, 10, 8, 8, 10, 11 }, { 3, 1, 10, 11, 3, 10 }, { 1, 2, 11, 1, 11, 9, 9, 11, 8 }, { 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9 }, { 0, 2, 11, 8, 0, 11 }, { 3, 2, 11 }, { 2, 3, 8, 2, 8, 10, 10, 8, 9 }, { 9, 10, 2, 0, 9, 2 }, { 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8 }, { 1, 10, 2 }, { 1, 3, 8, 9, 1, 8 }, { 0, 9, 1 }, { 0, 3, 8 }, {} }; } Chunk3DMeshFactory : import com.chevreuilgames.retroflashyrpg.math.MeshBufferUtils; import com.chevreuilgames.retroflashyrpg.world.level.zonelevel.chunk.Chunk3D; import com.chevreuilgames.retroflashyrpg.world.level.zonelevel.chunk.ChunkMap; import com.chevreuilgames.retroflashyrpg.world.level.zonelevel.chunk.IChunk; import com.jme3.math.Vector3f; import com.jme3.scene.Mesh; import com.jme3.scene.VertexBuffer; import com.jme3.scene.VertexBuffer.Format; import com.jme3.scene.VertexBuffer.Type; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.util.ArrayList; import java.util.List; /** * Factory for creating meshes out of a scalar field using the marching cubes algorithm. The reference is the back bottom left point, which is locally the point (0, 0, 0). */ public final class Chunk3DMeshFactory { private ChunkMap m_chunkMap; private Chunk3D m_chunk; private Chunk3D[][][] m_adjacentChunks; private float m_isoLevel; private float[] m_cubeScalars; private Vector3f m_origin; private List<Vector3f> m_vertices; /** * Constructs a new Chunk3DMeshFactory for generating meshes out of a scalar field with the marching cubes algorithm. * * @param chunkMap The chunk map that contains the adjacent chunks. * @param chunk The chunk used to create a mesh. * @param isoLevel The minimum density needed for a position to be considered solid. */ public Chunk3DMeshFactory(ChunkMap chunkMap, Chunk3D chunk, float isoLevel) { this.m_chunkMap = chunkMap; this.m_chunk = chunk; this.m_adjacentChunks = createAdjacentChunks(); this.m_isoLevel = isoLevel; this.m_origin = computeCenterPoint(); } /** * Constructs a new Chunk3DMeshFactory for generating meshes out of a scalar field with the marching cubes algorithm. * * @param chunkMap The chunk map that contains the adjacent chunks. * @param chunk The chunk used to create a mesh. * @param isoLevel The minimum density needed for a position to be considered solid. * @param origin The local origin for all vertices of the generated mesh. */ public Chunk3DMeshFactory(ChunkMap chunkMap, Chunk3D chunk, float isoLevel, Vector3f origin) { this.m_chunkMap = chunkMap; this.m_chunk = chunk; this.m_adjacentChunks = createAdjacentChunks(); this.m_isoLevel = isoLevel; this.m_origin = origin; } private Chunk3D[][][] createAdjacentChunks() { Chunk3D[][][] adjacentChunks = new Chunk3D[3][3][3]; final int length = 3; for (int x = 0; x < length; ++x) { for (int y = 0; y < length; ++y) { for (int z = 0; z < length; ++z) { adjacentChunks[x][y][z] = m_chunkMap.getChunk3DWithEmpty(m_chunk.getIndex().add(x - 1, y - 1, z - 1)); } } } return adjacentChunks; } public Mesh createMesh() { Mesh mesh = new Mesh(); FloatBuffer positionBuffer = createPositionBuffer(); IntBuffer indexBuffer = createIndexBuffer(); FloatBuffer normalBuffer = MeshBufferUtils.createNormalBuffer(m_vertices); FloatBuffer textureBuffer = MeshBufferUtils.createTextureBuffer(m_vertices.size()); MeshBufferUtils.setMeshBuffer(mesh, Type.Position, positionBuffer); MeshBufferUtils.setMeshBuffer(mesh, Type.Index, indexBuffer); MeshBufferUtils.setMeshBuffer(mesh, Type.Normal, normalBuffer); MeshBufferUtils.setMeshBuffer(mesh, Type.TexCoord, textureBuffer); mesh.updateBound(); return mesh; } private IntBuffer createIndexBuffer() { IntBuffer indexBuffer = (IntBuffer) VertexBuffer.createBuffer(Format.Int, MeshBufferUtils.INDEX_BUFFER_COMPONENT_COUNT, m_vertices.size() / MeshBufferUtils.INDEX_BUFFER_COMPONENT_COUNT); for (int vertexIndex = 0; vertexIndex < m_vertices.size(); ++vertexIndex) { indexBuffer.put(vertexIndex); } return indexBuffer; } private FloatBuffer createPositionBuffer() { m_vertices = new ArrayList<>(); for (int x = -1; x <= IChunk.CHUNK_SIZE; ++x) { for (int y = -1; y <= IChunk.CHUNK_SIZE; ++y) { for (int z = -1; z <= IChunk.CHUNK_SIZE; ++z) { Vector3f[] cubeVertices = new Vector3f[MeshBufferUtils.SHARED_VERTICES_PER_CUBE]; int cubeIndex = computeCubeIndex(cubeVertices, x, y, z); int edgeBitField = MarchingCubesTables.EDGE_TABLE[cubeIndex]; if (edgeBitField == 0) { continue; } Vector3f[] mcVertices = computeMCVertices(cubeVertices, edgeBitField, m_isoLevel); addVerticesToList(m_vertices, mcVertices, cubeIndex); } } } return MeshBufferUtils.createPositionBuffer(m_vertices); } /** * Add the generated vertices by the marching cubes algorithm to a list. The added vertices are modified so that they respect the origin. * * @param vertrexList The list where to add the marching cubes vertices. * @param mcVertices The marching cubes vertices. * @param cubeIndex The cubeIndex. */ private void addVerticesToList(List<Vector3f> vertrexList, Vector3f[] mcVertices, int cubeIndex) { int vertexCount = MarchingCubesTables.TRIANGLE_TABLE[cubeIndex].length; for (int i = 0; i < vertexCount; ++i) { vertrexList.add(mcVertices[MarchingCubesTables.TRIANGLE_TABLE[cubeIndex][i]].add(m_origin)); } } /** * Computes the marching cubes vertices. Those are the lerped vertices that can later be used to form triangles. * * @param cubeVertices The vertices of a cube, i.e. the 8 corners. * @param edgeBitField The bit field representing all the edges that should be drawn. * @param isoLevel The minimum density needed for a position to be considered solid. * * @return The lerped vertices of a cube to form the marching cubes shape. */ private Vector3f[] computeMCVertices(Vector3f[] cubeVertices, int edgeBitField, float isoLevel) { Vector3f[] lerpedVertices = new Vector3f[MarchingCubesTables.EDGE_BITS]; for (int i = 0; i < MarchingCubesTables.EDGE_BITS; ++i) { if ((edgeBitField & (1 << i)) != 0) { int edgeFirstIndex = MarchingCubesTables.EDGE_FIRST_VERTEX[i]; int edgetSecondIndex = MarchingCubesTables.EDGE_SECOND_VERTEX[i]; lerpedVertices[i] = MCLerp(cubeVertices[edgeFirstIndex], cubeVertices[edgetSecondIndex], m_cubeScalars[edgeFirstIndex], m_cubeScalars[edgetSecondIndex]); } } return lerpedVertices; } /** * Lerps two vertices of a cube along their shared designed edge according to their densities. * * @param firstVertex The edge's first vertex. * @param secondVertex The edge's second vertex. * @param firstScalar The first vertex's density. * @param secondScalar The second vertex's density. * * @return The lerped resulting vertex along the edge. */ private Vector3f MCLerp(Vector3f firstVertex, Vector3f secondVertex, float firstScalar, float secondScalar) { if (Math.abs(m_isoLevel - firstScalar) < Math.ulp(1f)) { return firstVertex; } if (Math.abs(m_isoLevel - secondScalar) < Math.ulp(1f)) { return secondVertex; } if (Math.abs(firstScalar - secondScalar) < Math.ulp(1f)) { return firstVertex; } float lerpFactor = (m_isoLevel - firstScalar) / (secondScalar - firstScalar); return firstVertex.clone().interpolateLocal(secondVertex, lerpFactor); } /** * Computes the cubeIndex, which represents the adjacent voxels' densities. * * @param cubeVertices The 8 corners of a cube. * @param indexX The X position of the marching cube in the grid. * @param indexY The Y position of the marching cube in the grid. * @param indexZ The Z position of the marching cube in the grid. * * @return The cubeIndex. */ private int computeCubeIndex(Vector3f[] cubeVertices, int indexX, int indexY, int indexZ) { m_cubeScalars = new float[MeshBufferUtils.SHARED_VERTICES_PER_CUBE]; final int edgeLength = 2; int cubeVertexIndex = 0; int cubeIndex = 0; int cubeIndexRHS = 1; /*- Vertex indices 4 ___________________ 5 /| /| / | / | / | / | 7 /___|______________/6 | | | | | | | | | | 0 |______________|___| 1 | / | / | / | / | / | / |/__________________|/ 3 2 */ for (int y = 0; y < edgeLength; ++y) { for (int z = 0; z < edgeLength; ++z) { for (int x = z % edgeLength; x >= 0 && x < edgeLength; x += (z == 0 ? 1 : -1)) { cubeVertices[cubeVertexIndex] = new Vector3f(indexX + x, indexY + y, indexZ + z); m_cubeScalars[cubeVertexIndex++] = queryGridScalar(indexX + x, indexY + y, indexZ + z); if (queryGridIsSolid(indexX + x, indexY + y, indexZ + z)) { cubeIndex |= cubeIndexRHS; } cubeIndexRHS <<= 1; } } } return cubeIndex; } /** * Queries if the grid is dense enough to be considered solid at the give (x, y, z) point. * * @param x The index on the X axis. * @param y The index on the Y axis. * @param z The index on the Z axis. * * @return If the grid is solid or empty at the given point. */ private boolean queryGridIsSolid(int x, int y, int z) { return isScalarSolid(queryGridScalar(x, y, z)); } /** * Queries the grid scalar at the given point and manages the boundaries, i.e. it's ok if x = -1 or is bigger than the gridLengthX. * * @param x The scalar X position in the grid. * @param y The scalar X position in the grid. * @param z The scalar X position in the grid. * * @return The grid scalar at the (x, y, z) position. */ private float queryGridScalar(int x, int y, int z) { int chunkX = IChunk.getChunkIndex(x); int chunkY = IChunk.getChunkIndex(y); int chunkZ = IChunk.getChunkIndex(z); return m_adjacentChunks[chunkX + 1][chunkY + 1][chunkZ + 1].getVoxelUnsafe(x - (chunkX << IChunk.CHUNK_SIZE_POWER_OF_2), y - (chunkY << IChunk.CHUNK_SIZE_POWER_OF_2), z - (chunkZ << IChunk.CHUNK_SIZE_POWER_OF_2)); } public Vector3f computeCenterPoint() { return new Vector3f((-IChunk.CHUNK_SIZE + 1) / 2, (-IChunk.CHUNK_SIZE + 1) / 2, (-IChunk.CHUNK_SIZE + 1) / 2); } private boolean isScalarSolid(float scalar) { return scalar > m_isoLevel; } } So here it is! I hope you find it useful
  16. OpenMouthGaming

    where to start pls help

    so im going to be completely honest I have autism and adhd so my concentration and attention span is crap but in one month I have an interview for a game development school I need to be able to learn any or all of the programming languages in the tags in under a month at least just the basics so im able to make simple programs for a portfolio preferably the stuff will be free and interactive so not just videos and text thx
  17. Hi there, I am currently working on a LibGDX game. The whole thing runs perfectly on my system. Now, I want to know, how to determine the minimum requirements for the game. First of all, I am pretty sure, there won't be much requirements needed, since it's mainly 2D and pretty basic stuff. The images on the other hand are high-res, so there might be a little bit of RAM needed, right? Additionally, I am not sure which graphics cards are supported. As LibGDX uses OpenGL, I suppose the OpenGL version is important. Do you guys have experience with determining the minimum requirements? BR Lukas PS: if I managed to post into the wrong forum, please inform me as well. I wasn't able to figure a better one out.
  18. I've started to work on this lib for our current project. But, maybe gamedev community will be interested in it. Assume, you want to get your game version name and code. Yes, you will write something like this using AndroidJavaClass and AndroidJavaObject: public static int GetVersionCode() { AndroidJavaClass contextCls = new AndroidJavaClass("com.unity3d.player.UnityPlayer"); AndroidJavaObject context = contextCls.GetStatic<AndroidJavaObject>("currentActivity"); AndroidJavaObject packageMngr = context.Call<AndroidJavaObject>("getPackageManager"); string packageName = context.Call<string>("getPackageName"); AndroidJavaObject packageInfo = packageMngr.Call<AndroidJavaObject>("getPackageInfo", packageName, 0); return packageInfo.Get<int>("versionCode"); } public static string GetVersionName() { AndroidJavaClass contextCls = new AndroidJavaClass("com.unity3d.player.UnityPlayer"); AndroidJavaObject context = contextCls.GetStatic<AndroidJavaObject>("currentActivity"); AndroidJavaObject packageMngr = context.Call<AndroidJavaObject>("getPackageManager"); string packageName = context.Call<string>("getPackageName"); AndroidJavaObject packageInfo = packageMngr.Call<AndroidJavaObject>("getPackageInfo", packageName, 0); return packageInfo.Get<string>("versionName"); } With this lib you can do same thing like this: var activity = Internal.GetCurrentActivity(); var pm = activity.GetPackageManager(); var pi = pm.GetPackageInfo(activity.GetPackageName(), 0); int code = pi.VersionCode; string name = pi.VersionName; There are not much you can do with this lib right now. But I'm going add new classes/methods from time to time. I appreciate any feedback. Also, would be great if you star this repo
  19. This is linked to another question that I asked here a couple of days ago: I'm looking at making a client-server game with a game server programmed in Java. The game will be a 2D turn-based game (like a board game), with a maximum of around 50-100 games going on at any one time. So, the performance requirements are not very high. The reason I would like to use Java for the server are because I already have some familiarity with it and I would like the server to not be tied to one particular platform. I would also like to design it so that the client interface to the server is as generic as possible, so that the same server could be used with multiple different clients. For example, there might be a web-based client, or someone else might design a stand-alone 3D client application later on, using the same server. So, I am looking for some advice on where to start with this, as I have very little experience with coding servers. I was planning to use web sockets for the client-server connection, which apparently uses Java EE (Enterprise Edition), which seems to require the use of the GlassFish server. However, I have been advised that a fully-fledged application server, like GlassFish, may be overkill for a game server. So, here are my questions: Should I use something like GlassFish? Does it makes sense for the type of game server I am describing? If not, then what sort of networking protocol/library would experienced Java game designers recommend? Are there any existing, general-purpose Java game servers that exist, which I might be able to use as a starting point? (Or even free software/open-source client-server games?) Or, should I look at coding my own game server from scratch? In which case, again, what sort of connection type/library would be recommended? Does anyone know of any suitable introductory tutorials that deal with how to make this sort of game server in Java? I guess my priority is probably minimizing the learning curve and the amount of time/effort involved, over performance. How much effort is this sort of undertaking going to require? Thanks in advance! :-)
  20. So, I developed an engine a while back following ThinMatrix's tutorials and it worked perfectly. However, upon trying to create my own simple lightweight game engine from scratch, I hit a snag. I created an engine that only wants to render my specified background color, and nothing else. I first tried to render just one cube, and when that failed I figured that i probably just had the incorrect coordinates set, so I went and generated a hundred random cubes... Nothing. Not even a framerate drop. So I figure that they aren't being passed through the shaders, however the shaders are functioning as I'm getting no errors (to my knowledge, I can't be sure). The engine itself is going to be open source and free anyways, so I don't mind posting the source here. Coded in Java, using OpenGL (from LWJGL), and in Eclipse (Neon) format. Warning: When first running the engine, it will spit out an error saying it couldn't find a config file, this will then generate a new folder in your %appdata% directory labeled 'Fusion Engine' with a Core.cfg file. This file can be opened in any old text editor, so if you aren't comfortable with that just change it in the source at: "src/utility/ConfigManager.java" before running. Just ask if you need more info, please I've been trying to fix this for a month now. Fusion Engine V2.zip
  21. FireFlood

    Lobby, Connection

    Language: Java Greetings. I'm developing a multiplayer / singleplayer game. I've already wrote all the game logic and byte protocol for in-game communication. 1. Lobby What I need is an implementation of a lobby which supports these basic functions: create room join room switch room host change room settings (module id (see below), max players, map, etc) send private / public message switch room / player state start game session I've made a very raw, unstable version of this using Netty framework over TCP protocol, however I am not against open-source ready solutions, but I could't find any, besides Nadron. 2. Client connection. Though my logic code basic is very simple, a large chunk of it described in concrete "Module" which is a pack of scripts, json files, maps, and, additionally, contains all the textures, sounds and other game materials. What I need is when a client wants to join server, all the server modules will be somehow sent to the client and only after that they join. Basically I need the same behaviour as how it happens, for example, in Garry's Mod when player joins the server. I thought of 2 approaches: 1. A single download-upload server db which somehow synchronize with game server and notify when client finishes downloading. (Example: Steam Workshop) 2. Since game server handles its own module db it will also send the information to all incoming clients. (Example: pretty sure all private or cracked servers) Am I right? Sure, I could use raw Netty, but it will be a huge pain in the ass to implement a stable lobby logic, file serializing / transfer and sync all of this since I have no real experience in net programming. What Java technologies / frameworks would you recommend for this case? Or should I stick to Netty?
  22. Hello, I am trying to make a GeometryUtil class that has methods to draw point,line ,polygon etc. I am trying to make a method to draw circle. There are many ways to draw a circle. I have found two ways, The one way: public static void drawBresenhamCircle(PolygonSpriteBatch batch, int centerX, int centerY, int radius, ColorRGBA color) { int x = 0, y = radius; int d = 3 - 2 * radius; while (y >= x) { drawCirclePoints(batch, centerX, centerY, x, y, color); if (d <= 0) { d = d + 4 * x + 6; } else { y--; d = d + 4 * (x - y) + 10; } x++; //drawCirclePoints(batch,centerX,centerY,x,y,color); } } private static void drawCirclePoints(PolygonSpriteBatch batch, int centerX, int centerY, int x, int y, ColorRGBA color) { drawPoint(batch, centerX + x, centerY + y, color); drawPoint(batch, centerX - x, centerY + y, color); drawPoint(batch, centerX + x, centerY - y, color); drawPoint(batch, centerX - x, centerY - y, color); drawPoint(batch, centerX + y, centerY + x, color); drawPoint(batch, centerX - y, centerY + x, color); drawPoint(batch, centerX + y, centerY - x, color); drawPoint(batch, centerX - y, centerY - x, color); } The other way: public static void drawCircle(PolygonSpriteBatch target, Vector2 center, float radius, int lineWidth, int segments, int tintColorR, int tintColorG, int tintColorB, int tintColorA) { Vector2[] vertices = new Vector2[segments]; double increment = Math.PI * 2.0 / segments; double theta = 0.0; for (int i = 0; i < segments; i++) { vertices[i] = new Vector2((float) Math.cos(theta) * radius + center.x, (float) Math.sin(theta) * radius + center.y); theta += increment; } drawPolygon(target, vertices, lineWidth, segments, tintColorR, tintColorG, tintColorB, tintColorA); } In the render loop: polygonSpriteBatch.begin(); Bitmap.drawBresenhamCircle(polygonSpriteBatch,500,300,200,ColorRGBA.Blue); Bitmap.drawCircle(polygonSpriteBatch,new Vector2(500,300),200,5,50,255,0,0,255); polygonSpriteBatch.end(); I am trying to choose one of them. So I thought that I should go with the one that does not involve heavy calculations and is efficient and faster. It is said that the use of floating point numbers , trigonometric operations etc. slows down things a bit. What do you think would be the best method to use? When I compared the code by observing the time taken by the flow from start of the method to the end, it shows that the second one is faster. (I think I am doing something wrong here ). Please help! Thank you.
  23. I'm using the OPENGL with eclipse+JOGL.My goal is to create movement of the camera and the player.I create main class, which create some box in 3D and hold an object of PlayerAxis.I create PlayerAxis class which hold the axis of the player.If we want to move the camera, then in the main class I call to the func "cameraMove"(from PlayerAxis) and it update the player axis.That's work good.The problem start if I move the camera on 2 axis, for example if I move with the camera right(that's on the y axis)and then down(on the x axis) -in some point the move front is not to the front anymore..In order to move to the front, I doplayer.playerMoving(0, 0, 1);And I learn that in order to keep the front move, I need to convert (0, 0, 1) to the player axis, and then add this.I think I dont do the convert right.. I will be glad for help!Here is part of my PlayerAxis class: //player coordinate float x[] = new float[3]; float y[] = new float[3]; float z[] = new float[3]; public PlayerAxis(float move_step, float angle_move) { x[0] = 1; y[1] = 1; z[2] = -1; step = move_step; angle = angle_move; setTransMatrix(); } public void cameraMoving(float angle_step, String axis) { float[] new_x = x; float[] new_y = y; float[] new_z = z; float alfa = angle_step * angle; switch(axis) { case "x": new_z = addVectors(multScalar(z, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(z, SIN(alfa))); break; case "y": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(z, SIN(alfa))); new_z = subVectors(multScalar(z, COS(alfa)), multScalar(x, SIN(alfa))); break; case "z": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(x, SIN(alfa))); } x = new_x; y = new_y; z = new_z; normalization(); } public void playerMoving(float x_move, float y_move, float z_move) { float[] move = new float[3]; move[0] = x_move; move[1] = y_move; move[2] = z_move; setTransMatrix(); float[] trans_move = transVector(move); position[0] = position[0] + step*trans_move[0]; position[1] = position[1] + step*trans_move[1]; position[2] = position[2] + step*trans_move[2]; } public void setTransMatrix() { for (int i = 0; i < 3; i++) { coordiTrans[0][i] = x[i]; coordiTrans[1][i] = y[i]; coordiTrans[2][i] = z[i]; } } public float[] transVector(float[] v) { return multiplyMatrixInVector(coordiTrans, v); } and in the main class i have this: public void keyPressed(KeyEvent e) { if (e.getKeyCode()== KeyEvent.VK_ESCAPE) { System.exit(0); //player move } else if (e.getKeyCode()== KeyEvent.VK_W) { //front //moveAmount[2] += -0.1f; player.playerMoving(0, 0, 1); } else if (e.getKeyCode()== KeyEvent.VK_S) { //back //moveAmount[2] += 0.1f; player.playerMoving(0, 0, -1); } else if (e.getKeyCode()== KeyEvent.VK_A) { //left //moveAmount[0] += -0.1f; player.playerMoving(-1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_D) { //right //moveAmount[0] += 0.1f; player.playerMoving(1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_E) { //moveAmount[0] += 0.1f; player.playerMoving(0, 1, 0); } else if (e.getKeyCode()== KeyEvent.VK_Q) { //moveAmount[0] += 0.1f; player.playerMoving(0, -1, 0); //camera move } else if (e.getKeyCode()== KeyEvent.VK_I) { //up player.cameraMoving(1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_K) { //down player.cameraMoving(-1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_L) { //right player.cameraMoving(-1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_J) { //left player.cameraMoving(1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_O) { //right round player.cameraMoving(-1, "z"); } else if (e.getKeyCode()== KeyEvent.VK_U) { //left round player.cameraMoving(1, "z"); } } finallt found it.... i confused with the transformation matrix row and col. thanks anyway!
  24. This week Hello everyone! This week, as always, I fixed few bugs, did few tweaks and implemented small features. Here's a list of things I've done this week: Tweaked enemy prices and levels. Added object picking Added sounds and music Tweaked audio gains for different sounds and music Added capability of selling towers Added new cursor Implemented support for multiple enemy waves Added new enemy: Tank Added new turret type: Rocket turret Screenshots: Important decision Yesterday I came to important realization while making my game. I realized that I need to build a fully working prototype of the game, figure out all the mechanics, implement all the tower and enemy types first and only then continue doing the minor things and polishing things up. I also realized that I should spend less time on music and 3D models. All these things will be done, but not now. I need to make my game fun first, and only then worry about all the assets. I don't want to repeat same mistake which I did with my previous games where I spent too much time on graphics, sounds, performance optimizations and too little time for actual gameplay mechanics. Problems There's one problem which I currently face, and it has to do with the "Tesla Coil" tower. As of now it slows down the enemies in its range, but there's a problem with that. The problem arises when you put the tower at the very end of the maze. When you do that, it not only slows down the enemies in its range, but it also slows down any enemies which came before them. This is because of the obstacle avoidance which makes it so that the enemies couldn't go through each other like some sort of ghosts. The only solution which I can think of right now is to remove this type of tower and replace it with something else. Next week This coming week I'll start thinking of and implementing all the different tower and enemy types. I might do some very basic 3D models to use as placeholders as well. That's all for now, thanks for reading Twitter: https://twitter.com/extrabitgamesFacebook: https://www.facebook.com/extrabitgamesWebsite: http://extrabitgames.com
  25. Hello again, everyone! Today is going to be a very short blog entry because all I wanted to show you is the new soundtracks which I created. As of now I only have 2 soundtracks, but I plan on making total of 12, or at least 10. The genre I choose is psychedelic trance. The main reason for it is because it's fast paced and I think it would suit my game pretty well. I also added shooting and exploding sounds which make the game just a bit more interesting. You can have a listen of the soundtracks here: That's all for today, thanks for reading! Twitter: https://twitter.com/extrabitgames Facebook: https://www.facebook.com/extrabitgames Website: http://extrabitgames.com
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

We are the game development community.

Whether you are an indie, hobbyist, AAA developer, or just trying to learn, GameDev.net is the place for you to learn, share, and connect with the games industry. Learn more About Us or sign up!

Sign me up!