Jump to content

  • Log In with Google      Sign In   
  • Create Account

Modern shadow rendering techniques?

Old topic!

Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.

  • You cannot reply to this topic
1 reply to this topic

#1   Members   


Posted 04 May 2013 - 09:41 AM

What is the state of the art in terms of shadow rendering? My target is OpenGL 3.2, using a deferred rendering pipeline, if that matters.


It's been years since I looked into shadow rendering, and at that time there were numerous techniques available, from stencils to the various shadow mapping methods. At that time, rendering shadows required separate rendering passes, controlled by the CPU. But then recently I saw a demo where a scene was rendered entirely on the GPU, including shadows. I have no idea how that would have been accomplished, or if it is even a reasonable thing to do (beyond a tech demo).


Given the large amount of old info on the internet, I'd like to learn what methods people are using these days, and how much of it can be pushed to the GPU (assuming my target OpenGL version supports it).

Edited by Nairou, 04 May 2013 - 09:45 AM.

#2   Members   


Posted 05 May 2013 - 09:33 AM

Maybe not state of the art, but a very stable and commonly used technique for sun shadows would be cascaded shadow mapping plus Exponential Shadow Maps or Percentage Closer Filtering to make them soft. Both techniques to soften them can be realized with just a depth texture, which is good as not rendering colors is a noticeable performance improvement.

For surface acene issues, glPolygonOffset works quite good for me, alternatives I found was to scale the depth in the lightdepth projection matrix or to calculate the perfect bias by using ddx/ddy.

Using OpenGL 3.2, there are array textures available, which allows for very nice selecting of the right depthmap within the final shadow shader. You render into such an array texture in several passes or just in one, by setting the gl_Layer variable in a geometry shader. I experimented with several passes vs creating the data in a geometry shader and it turned out, that the speed differences is very small (geometry shader was slightly faster) and that geometry shaders creating geometry and instancing don´t seem to like each other very much (slower than rendering in several passes). In several papers they proposed to draw with instancing to remove the passes and just using a geometry shader to pass the geometry and selecting the layer instead of creating and culling new geometry. I also found some AMD extension to set gl_Layer in the vertex shader.


Kinda state of the art seem to be Sample Distribution Shadow Maps, but it seems to come with some not much, but still noticeable quality changes when moving the camera.


For point lights, you can render a depth cubemap in just one pass using instancing or a geometry shader to doublicate the geometry and slecting the layer, just as for the sun shadow splits.


Some links:

Cascaded Shadow Maps - http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx

Some info on removing flickering and surface acne - http://msdn.microsoft.com/en-us/library/ee416324(VS.85).aspx

How to split the frustum, several passes vs geometry shader vs instancing - http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html

More info on single pass rendering plus some other things - http://dice.se/publications/title-shadows-decals-d3d10-techniques-from-frostbite/

A very basic article on Percentage Closer Filtering - http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Exponential Shadow Maps - http://nolimitsdesigns.com/tag/exponential-shadow-map/

Sample Distribution Shadow Maps (you might want to check out the demo source) - http://visual-computing.intel-research.net/art/publications/sdsm/

Rendering into a cubemap in one pass - http://diaryofagraphicsprogrammer.blogspot.de/2011/02/shadows-thoughts-on-ellipsoid-light.html


Most of those sources are based on DirectX, but can be easily adapted to OpenGL.


This is my result using 4 splits, each 1024^2, 24bit depth, using 2*2 PCF and enabled GL_TEXTURE_COMPARE_MODE. I create the splits such, that their part of the view frustum to cover always fits without having to change it, as this allows them to be completely flicker free as long as the light source does not move.



I would give you numbers for my tests, but unfortunately I didn´t write them down.

Old topic!

Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.