Why is ∞(infinite) not considered a number?
I mean, if zero is considered a number, it sounds reasonable to consider infinite a number too.
Edited by gasto, 01 June 2014 - 03:28 PM.
We get it. We use ad blockers too. But GameDev.net displays them so we can continue to be a great platform for you.
Please whitelist GameDev.net and our advertisers.
Also consider a GDNet+ Pro subscription to remove all ads from GameDev.net.
Subscribe to GameDev.net's newsletters to receive the latest updates and exclusive content.
Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.
Posted 01 June 2014 - 03:27 PM
Why is ∞(infinite) not considered a number?
I mean, if zero is considered a number, it sounds reasonable to consider infinite a number too.
Edited by gasto, 01 June 2014 - 03:28 PM.
Posted 01 June 2014 - 03:45 PM
Please don't PM me with questions. Post them in the forums for everyone's benefit, and I can embarrass myself publicly.
You don't forget how to play when you grow old; you grow old when you forget how to play.
Posted 01 June 2014 - 03:57 PM
POPULAR
Infinity is a concept and doesn't work like a number. If you add 1 to infinity you still have infinity. On the other hand if you add 1 to 0 you get 1.
Look at it a different way - zero has a specific place on a number line. Where is infinity? You would say the number of points between zero and one is infinite and not a specific point.
Posted 01 June 2014 - 03:59 PM
Infinity is a concept and doesn't work like a number. If you add 1 to infinity you still have infinity. On the other hand if you add 1 to 0 you get 1.
Look at it a different way - zero has a specific place on a number line. Where is infinity? You would say the number of points between zero and one is infinite and not a specific point.
Actually, if you add one to infinity you get ∞+1=∞
Edited by gasto, 01 June 2014 - 04:05 PM.
Posted 01 June 2014 - 04:01 PM
POPULAR
Well, answer this questions and you might get the answer:
1 - What integer number comes before 0? And what integer number comes before infinity?
2 - What integer number comes after 0? And what integer number comes after infinity?
Basically, infinity means "a number bigger that any number you could think of", so you can't name ONE integer that comes exactly before or after.
When you say "why isn't it a number if zero is a number?" it doesn't make sense. How does zero being a number gives you enough information to conclude that infinity is a number too? Do you know about the mathematical concepts that define 0 and infinity? You can find hundreds of results in google about why 0 IS a number and why infinity isn't, if you want to suggest that infinity read some results and think again if that makes sense.
Maybe you did the basic operations with integers and infinity and tought "hey, this could be set as a rule: ANYTHING + infinity = infinity, ANYTHING - infinity = infinity", but it doesn't mean you've discovered something new. When you work with infinity you're really working with limits, and those are the rules that are beign applied, you can't do basic operations with it.
Infinity is a concept and doesn't work like a number. If you add 1 to infinity you still have infinity. On the other hand if you add 1 to 0 you get 1.
Look at it a different way - zero has a specific place on a number line. Where is infinity? You would say the number of points between zero and one is infinite and not a specific point.
Actually, if you add one to infinity you get ∞+1
So... you get a "the next number after infinity"? a number bigger than infinity? Wouldn't that also be infinity? What dfinition of infinity are you using? Maybe that explains it all...
Edited by DiegoSLTS, 01 June 2014 - 04:02 PM.
Posted 01 June 2014 - 05:33 PM
POPULAR
Zero compared to Zero is equal. There is only one value for 0, and that is 0.
Infinity compared to Infinity can be equal, greater, or less. "x²" grows at much higher rater than "x", and as such the infinity of the limit x² is "greater" (in a sort of speak) than that of "x".
In this case, if we try to subtract Inf - Inf; we could end up with x - x² which has a limit at negative infinity, or with x² - x; which has a limit at positive infinity. Although we're looking at the same symbol ∞ on both sides, turns out ∞ - ∞ is not the same as ∞ - ∞
Infinity is a concept, not a number.
Posted 01 June 2014 - 06:37 PM
In a certain sense, Infinity can't be *a* number, because it is all numbers at once. There is no single value for infinity, There are also multiple infinities, and some infinities are demonstrably larger than other infinities. Eg, take the set of all odd integers and the set of all even integers. Clearly they are equal in size, but if you take the set of all integers, it is the sum of the odd integers set and even integers set, and is thus larger than either of them.
Posted 01 June 2014 - 09:28 PM
Posted 02 June 2014 - 12:41 AM
If you think like a mathematician, you can make your own definitions (as long as you take the consequences). So you can define infinity as a number if you like (e.g. as the sum of a sufficient number of ones so that it becomes larger than any finite number). And you'll end up with the surreal or hyperreal numbers. You may ask, are those numbers real? Well, are the real numbers real? And are the imaginary numbers just imaginary? Hmmm...
[edit]
As for the original question:
Assume x is a positive integer that is greater than any other integer. Let y = x + 1. Then y is greater than x (by rules of addition). But x was supposed to be greater than y. Contradiction. Assumption was false. So there can't be such an integer x.
Edited by Felix Ungman, 02 June 2014 - 12:51 AM.
openwar - the real-time tactical war-game platform
Posted 02 June 2014 - 02:58 AM
There are ideas how to extend the field of real numbers to include infinity:
http://en.wikipedia.org/wiki/Extended_real_number_line
(The German article is more elaborate: http://de.wikipedia.org/wiki/Erweiterte_reelle_Zahl)
However, the usual arithmetic rules would no longer hold in such a field, because this set is no longer an ordered field:
http://en.wikipedia.org/wiki/Ordered_field
So in practice it seem to be not very useful to work with such a definition.
Related question:
From a mathematical point of view: If you die young, are you longer dead?
Posted 02 June 2014 - 09:27 AM
You can easily place "0" on a ruler, right? So it is easy to see that "0" is a number.
If infinity was a "number", where would you put that on the ruler?
For infinity to be a "number", it had to have a fixed position on this ruler, right? To have a fixed position, Infinity would need to have an upper limit -- but no matter how big of a number you can think of, there is always a number that is bigger. In fact, there is an infinity of numbers bigger than any numbers you can think of. Infinity just means that something goes on and on forever, never ending. Infinity is not a number, but just something to describe that something tends to grow or shrink without bounds, when used in mathematics. It is an entirely different concept altogether.
Edited by aregee, 02 June 2014 - 09:32 AM.
Posted 02 June 2014 - 11:34 AM
Assume x is a positive integer that is greater than any other integer. Let y = x + 1. Then y is greater than x (by rules of addition). But x was supposed to be greater than y. Contradiction. Assumption was false. So there can't be such an integer x.
Or the conclusion could be that this particular definition of infinity is not very good.
If there is such a thing as "infinity" in a set of numbers, it most definitely won't be a positive integer. The smallest infinite ordinal "omega" is greater than any integer. But of course "omega" itself is not an integer: http://en.wikipedia.org/wiki/Ordinal_number
Posted 02 June 2014 - 12:04 PM
Posted 02 June 2014 - 12:14 PM
Perhaps indicating some kind of overflow in the substrate of the universe, or that something akin to floating point error exists even for the humble integer when the values are extreme?My favorite is what happens when you try to add all the integers -- 0 + 1 + 2 + 3... all the way to infinity.
The intuitive answer is infinity, but it's also possible to get the answer of -^{1}/_{12}th
Posted 02 June 2014 - 12:25 PM
Nah, it's a bug in the universe's FPU, similar to the Pentium FDIV bug. Send bug reports to your nearest church/chapel/synagogue/mosque/temple/etc.Perhaps indicating some kind of overflow in the substrate of the universe, or that something akin to floating point error exists even for the humble integer when the values are extreme?My favorite is what happens when you try to add all the integers -- 0 + 1 + 2 + 3... all the way to infinity.
The intuitive answer is infinity, but it's also possible to get the answer of -^{1}/_{12}th
Posted 02 June 2014 - 04:48 PM
Infinitely smaller if we divide by infinity.
Infinitely larger if we multiply by infinity.
Both results can be compared if one is larger than the other, so both must be numbers if we are able compare if infinitely small is less than infinitely large...right?
Posted 02 June 2014 - 06:44 PM
My favorite is what happens when you try to add all the integers -- 0 + 1 + 2 + 3... all the way to infinity.
The intuitive answer is infinity, but it's also possible to get the answer of -^{1}/_{12}th
This is in fact, not true. If you evaluate the sum of all the natural numbers (1 + 2 + 3 + 4...) it is infinitely large. To evaluate this sum to have a value of -^{1}/_{12}th is not really correct. =/
If you want to learn the mathematical reasoning behind why the answer is infinity, but why you could evaluate a similar looking sum to have a value of -^{1}/_{12}th, I suggest looking up the zeta function.If you have an interest in maths, I really recommend it, there are some surprising results and really beautiful mathematics to be found there. If you don't want to learn the maths, just take it as 1 + 2 + 3 + 4... = infinity
Both results can be compared if one is larger than the other, so both must be numbers if we are able compare if infinitely small is less than infinitely large...right?
No, not right. Infinities can be compared to each other, but this does not mean they must be a number. Think of it like this - I can compare two shirts and select my favourite, but that does not mean I am evaluating each to a numerical value. Not everything that can be compared must be a number.
Posted 02 June 2014 - 06:56 PM
This is in fact, not true. If you evaluate the sum of all the natural numbers (1 + 2 + 3 + 4...) it is infinitely large. To evaluate this sum to have a value of -1/12th is not really correct. =/
If you want to learn the mathematical reasoning behind why the answer is infinity, but why you could evaluate a similar looking sum to have a value of -1/12th, I suggest looking up the zeta function.If you have an interest in maths, I really recommend it, there are some surprising results and really beautiful mathematics to be found there. If you don't want to learn the maths, just take it as 1 + 2 + 3 + 4... = infinity
I'm not a mathematician, but according to wikipedia and wolframalpha, ζ(−1) = -1/12
It might not be true under every system of mathematics, but it's certainly a correct answer under some of them. It's even used in physical calculations where the mathematical prediction matches up correctly with observations!
Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.
GameDev.net™, the GameDev.net logo, and GDNet™ are trademarks of GameDev.net, LLC.