Jump to content

  • Log In with Google      Sign In   
  • Create Account

Interested in a FREE copy of HTML5 game maker Construct 2?

We'll be giving away three Personal Edition licences in next Tuesday's GDNet Direct email newsletter!

Sign up from the right-hand sidebar on our homepage and read Tuesday's newsletter for details!


Atmospheric Scattering, Planet Rendering (O'neil)


Old topic!
Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.

  • You cannot reply to this topic
1 reply to this topic

#1 Axiverse   Members   -  Reputation: 344

Like
0Likes
Like

Posted 13 February 2013 - 11:10 PM

I'm trying to implement O'neil's atmospheric scattering shader in WebGL but I'm a little stuck. I've consulted various sources and am trying to get a working implementation running, but unfortunately all I'm getting is a white circle. Is anyone here familiar with it and could possibly see where I'm going wrong? The shaders below are an implementation of the SkyFromSpace shaders.

 

scene = new THREE.Scene()
camera = new THREE.PerspectiveCamera(70, window.innerWidth/window.innerHeight, 0.1, 1000)

renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
renderer.setClearColorHex(0x111111, 1)

$('div.viewport').append(renderer.domElement)
$(window).resize ->
	camera = new THREE.PerspectiveCamera(70, window.innerWidth/window.innerHeight, 0.1, 1000)
	renderer.setSize( window.innerWidth, window.innerHeight )

vertexSky =
"""
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//

uniform vec3 v3LightPosition;	// The direction vector to the light source
uniform vec3 v3InvWavelength;	// 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight;	// The camera's current height
uniform float fCameraHeight2;	// fCameraHeight^2
uniform float fOuterRadius;		// The outer (atmosphere) radius
uniform float fOuterRadius2;	// fOuterRadius^2
uniform float fInnerRadius;		// The inner (planetary) radius
uniform float fInnerRadius2;	// fInnerRadius^2
uniform float fKrESun;			// Kr * ESun
uniform float fKmESun;			// Km * ESun
uniform float fKr4PI;			// Kr * 4 * PI
uniform float fKm4PI;			// Km * 4 * PI
uniform float fScale;			// 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth;		// The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth;	// fScale / fScaleDepth

const int nSamples = 3;
const float fSamples = 3.0;

varying vec3 v3Direction;
varying vec3 c0;
varying vec3 c1;


float scale(float fCos)
{
	float x = 1.0 - fCos;
	return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}

void main(void)
{
	// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
	vec3 v3Ray = position - cameraPosition;
	float fFar = length(v3Ray);
	v3Ray /= fFar;

	// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
	float B = 2.0 * dot(cameraPosition, v3Ray);
	float C = fCameraHeight2 - fOuterRadius2;
	float fDet = max(0.0, B*B - 4.0 * C);
	float fNear = 0.5 * (-B - sqrt(fDet));

	// Calculate the ray's starting position, then calculate its scattering offset
	vec3 v3Start = cameraPosition + v3Ray * fNear;
	fFar -= fNear;
	float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
	float fStartDepth = exp(-1.0 / fScaleDepth);
	float fStartOffset = fStartDepth * scale(fStartAngle);
	//c0 = vec3(1.0, 0, 0) * fStartAngle;

	// Initialize the scattering loop variables
	float fSampleLength = fFar / fSamples;
	float fScaledLength = fSampleLength * fScale;
	vec3 v3SampleRay = v3Ray * fSampleLength;
	vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;

	//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);

	// Now loop through the sample rays
	vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
	for(int i=0; i<nSamples; i++)
	{
		float fHeight = length(v3SamplePoint);
		float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
		float fLightAngle = dot(v3LightPosition, v3SamplePoint) / fHeight;
		float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
		float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
		vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));

		v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
		v3SamplePoint += v3SampleRay;
	}

	// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
	gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
	c0 = v3FrontColor * (v3InvWavelength * fKrESun);
	c1 = v3FrontColor * fKmESun;
	v3Direction = cameraPosition - position;
}
"""

fragmentSky =
"""
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//

uniform vec3 v3LightPos;
uniform float g;
uniform float g2;

varying vec3 v3Direction;
varying vec3 c0;
varying vec3 c1;

// Calculates the Mie phase function
float getMiePhase(float fCos, float fCos2, float g, float g2)
{
	return 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos2) / pow(1.0 + g2 - 2.0 * g * fCos, 1.5);
}

// Calculates the Rayleigh phase function
float getRayleighPhase(float fCos2)
{
	return 0.75 + 0.75 * fCos2;
}

void main (void)
{
	float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
	float fCos2 = fCos * fCos;

	vec3 color =	getRayleighPhase(fCos2) * c0 +
					getMiePhase(fCos, fCos2, g, g2) * c1;

 	gl_FragColor = vec4(color, 1.0);
	gl_FragColor.a = gl_FragColor.b;
}
"""

radius = 1000.0

atmosphere =
	Kr				: 0.0025
	Km				: 0.0010
	ESun			: 15.0
	g				: -0.990
	innerRadius 	: radius
	outerRadius		: radius * 1.05
	wavelength		: [0.650, 0.570, 0.475]
	scaleDepth		: 0.25
	mieScaleDepth	:	0.1

uniforms =
	v3LightPosition:
		type:	"v3"
		value:	new THREE.Vector3(1e8, 0, 1e8).normalize()
	v3InvWavelength:
		type:	"f"
		value:	new THREE.Vector3(1 / Math.pow(atmosphere.wavelength[0], 4), 1 / Math.pow(atmosphere.wavelength[1], 4), 1 / Math.pow(atmosphere.wavelength[2], 4))
	fCameraHeight:
		type:	"f"
		value:	0
	fCameraHeight2:
		type:	"f"
		value:	0
	fInnerRadius:
		type:	"f"
		value:	atmosphere.innerRadius
	fOuterRadius:
		type:	"f"
		value:	atmosphere.outerRadius
	fKrESun:
		type:	"f"
		value:	atmosphere.Kr * atmosphere.ESun
	fKmESun:
		type:	"f"
		value:	atmosphere.Km * atmosphere.ESun
	fKr4PI:
		type:	"f"
		value:	atmosphere.Kr * 4.0 * Math.PI
	fKm4PI:
		type:	"f"
		value:	atmosphere.Km * 4.0 * Math.PI
	fScale:
		type:	"f"
		value:	1 / (atmosphere.outerRadius - atmosphere.innerRadius)
	fScaleDepth:
		type:	"f"
		value:	atmosphere.scaleDepth
	fScaleOverScaleDepth:
		type:	"f"
		value:	1 / (atmosphere.outerRadius - atmosphere.innerRadius) / atmosphere.scaleDepth
	g:
		type:	"f"
		value:	atmosphere.g
	g2:
		type:	"f"
		value:	atmosphere.g * atmosphere.g
	nSamples:
		type:	"i"
		value:	3
	fSamples:
		type:	"f"
		value:	3.0
	tDiffuse:
		type:	"t"
		value:	0
		texture: null
	tDiffuseNight:
		type:	"t"
		value:	0
		texture: null
	tDisplacement:
		type:	"t"
		value:	0
		texture: null
	tSkyboxDiffuse:
		type:	"t"
		value:	0
		texture: null

geometry = new THREE.SphereGeometry(atmosphere.outerRadius, 50, 50)
material = new THREE.ShaderMaterial 
	uniforms:		uniforms
	vertexShader:	vertexSky
	fragmentShader:	fragmentSky
sphere = new THREE.Mesh(geometry, material)
scene.add(sphere)


c = null
f = 0
g = 0

render = ->
	requestAnimationFrame(render)
	# material.uniforms.v3LightPos.value.y += 0.01

	f += 0.01
	g += 0.02
	camera.position.z = radius * 1.9

	sphere.rotation.z += 0.005;
	sphere.rotation.x += 0.001;


	cameraHeight = camera.position.length()

	material.uniforms.v3LightPosition.value = new THREE.Vector3(0, Math.sin(f), Math.cos(f))
	material.uniforms.fCameraHeight.value = cameraHeight
	material.uniforms.fCameraHeight2.value = cameraHeight * cameraHeight

	renderer.render(scene, camera)

render()

 

What it should look like:

 

Sources:

http://forum.unity3d.com/threads/12296-Atmospheric-Scattering-help/page3

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html

http://www.nicholaswoodfield.com/showcase/planetshader.html

https://github.com/gwaldron/osgearth/blob/52973323c9cac722daee04561458580cc322c6da/src/osgEarthUtil/SkyNode.cpp



Sponsor:

#2 Axiverse   Members   -  Reputation: 344

Like
0Likes
Like

Posted 14 February 2013 - 01:43 AM

Got it working. I know I've tried this in the past and it's been a pain in the ass, so I'll post what I've done for future reference. Attached a image of what it looks like. =) I was missing a few uniform variables that I forgot to compute that needed to be sent to the shader.

 

scene = new THREE.Scene()
camera = new THREE.PerspectiveCamera(70, window.innerWidth/window.innerHeight, 0.1, 1000)

renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
renderer.setClearColorHex(0x000000, 1)

$('div.viewport').append(renderer.domElement)
$(window).resize ->
	camera = new THREE.PerspectiveCamera(70, window.innerWidth/window.innerHeight, 0.1, 1000)
	renderer.setSize( window.innerWidth, window.innerHeight )

vertexSky =
"""
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//

uniform vec3 v3LightPosition;	// The direction vector to the light source
uniform vec3 v3InvWavelength;	// 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight;	// The camera's current height
uniform float fCameraHeight2;	// fCameraHeight^2
uniform float fOuterRadius;		// The outer (atmosphere) radius
uniform float fOuterRadius2;	// fOuterRadius^2
uniform float fInnerRadius;		// The inner (planetary) radius
uniform float fInnerRadius2;	// fInnerRadius^2
uniform float fKrESun;			// Kr * ESun
uniform float fKmESun;			// Km * ESun
uniform float fKr4PI;			// Kr * 4 * PI
uniform float fKm4PI;			// Km * 4 * PI
uniform float fScale;			// 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth;		// The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth;	// fScale / fScaleDepth

const int nSamples = 3;
const float fSamples = 3.0;

varying vec3 v3Direction;
varying vec3 c0;
varying vec3 c1;


float scale(float fCos)
{
	float x = 1.0 - fCos;
	return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}

void main(void)
{
	// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
	vec3 v3Ray = position - cameraPosition;
	float fFar = length(v3Ray);
	v3Ray /= fFar;

	// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
	float B = 2.0 * dot(cameraPosition, v3Ray);
	float C = fCameraHeight2 - fOuterRadius2;
	float fDet = max(0.0, B*B - 4.0 * C);
	float fNear = 0.5 * (-B - sqrt(fDet));

	// Calculate the ray's starting position, then calculate its scattering offset
	vec3 v3Start = cameraPosition + v3Ray * fNear;
	fFar -= fNear;
	float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
	float fStartDepth = exp(-1.0 / fScaleDepth);
	float fStartOffset = fStartDepth * scale(fStartAngle);
	//c0 = vec3(1.0, 0, 0) * fStartAngle;

	// Initialize the scattering loop variables
	float fSampleLength = fFar / fSamples;
	float fScaledLength = fSampleLength * fScale;
	vec3 v3SampleRay = v3Ray * fSampleLength;
	vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;

	//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);

	// Now loop through the sample rays
	vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
	for(int i=0; i<nSamples; i++)
	{
		float fHeight = length(v3SamplePoint);
		float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
		float fLightAngle = dot(v3LightPosition, v3SamplePoint) / fHeight;
		float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
		float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
		vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));

		v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
		v3SamplePoint += v3SampleRay;
	}

	// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
	gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
	c0 = v3FrontColor * (v3InvWavelength * fKrESun);
	c1 = v3FrontColor * fKmESun;
	v3Direction = cameraPosition - position;
}
"""

fragmentSky =
"""
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//

uniform vec3 v3LightPos;
uniform float g;
uniform float g2;

varying vec3 v3Direction;
varying vec3 c0;
varying vec3 c1;

// Calculates the Mie phase function
float getMiePhase(float fCos, float fCos2, float g, float g2)
{
	return 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos2) / pow(1.0 + g2 - 2.0 * g * fCos, 1.5);
}

// Calculates the Rayleigh phase function
float getRayleighPhase(float fCos2)
{
	return 0.75 + 0.75 * fCos2;
}

void main (void)
{
	float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
	float fCos2 = fCos * fCos;

	vec3 color =	getRayleighPhase(fCos2) * c0 +
					getMiePhase(fCos, fCos2, g, g2) * c1;

 	gl_FragColor = vec4(color, 1.0);
	gl_FragColor.a = gl_FragColor.b;
}
"""

vertexGround =
"""
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
// Ported for use with three.js/WebGL by James Baicoianu

uniform vec3 v3LightPosition;		// The direction vector to the light source
uniform vec3 v3InvWavelength;	// 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight;	// The camera's current height
uniform float fCameraHeight2;	// fCameraHeight^2
uniform float fOuterRadius;		// The outer (atmosphere) radius
uniform float fOuterRadius2;	// fOuterRadius^2
uniform float fInnerRadius;		// The inner (planetary) radius
uniform float fInnerRadius2;	// fInnerRadius^2
uniform float fKrESun;			// Kr * ESun
uniform float fKmESun;			// Km * ESun
uniform float fKr4PI;			// Kr * 4 * PI
uniform float fKm4PI;			// Km * 4 * PI
uniform float fScale;			// 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth;		// The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth;	// fScale / fScaleDepth
uniform sampler2D tDiffuse;

varying vec3 v3Direction;
varying vec3 c0;
varying vec3 c1;
varying vec3 vNormal;
varying vec2 vUv;

const int nSamples = 3;
const float fSamples = 3.0;

float scale(float fCos)
{
	float x = 1.0 - fCos;
	return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}

void main(void)
{
	// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
	vec3 v3Ray = position - cameraPosition;
	float fFar = length(v3Ray);
	v3Ray /= fFar;

	// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
	float B = 2.0 * dot(cameraPosition, v3Ray);
	float C = fCameraHeight2 - fOuterRadius2;
	float fDet = max(0.0, B*B - 4.0 * C);
	float fNear = 0.5 * (-B - sqrt(fDet));

	// Calculate the ray's starting position, then calculate its scattering offset
	vec3 v3Start = cameraPosition + v3Ray * fNear;
	fFar -= fNear;
	float fDepth = exp((fInnerRadius - fOuterRadius) / fScaleDepth);
	float fCameraAngle = dot(-v3Ray, position) / length(position);
	float fLightAngle = dot(v3LightPosition, position) / length(position);
	float fCameraScale = scale(fCameraAngle);
	float fLightScale = scale(fLightAngle);
	float fCameraOffset = fDepth*fCameraScale;
	float fTemp = (fLightScale + fCameraScale);

	// Initialize the scattering loop variables
	float fSampleLength = fFar / fSamples;
	float fScaledLength = fSampleLength * fScale;
	vec3 v3SampleRay = v3Ray * fSampleLength;
	vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;

	// Now loop through the sample rays
	vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
	vec3 v3Attenuate;
	for(int i=0; i<nSamples; i++)
	{
		float fHeight = length(v3SamplePoint);
		float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
		float fScatter = fDepth*fTemp - fCameraOffset;
		v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
		v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
		v3SamplePoint += v3SampleRay;
	}

	// Calculate the attenuation factor for the ground
	c0 = v3Attenuate;
	c1 = v3FrontColor * (v3InvWavelength * fKrESun + fKmESun);

  gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
	//gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
	//gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;
  vUv = uv;
  vNormal = normal;
}
"""

fragmentGround =
"""
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
// Ported for use with three.js/WebGL by James Baicoianu

//uniform sampler2D s2Tex1;
//uniform sampler2D s2Tex2;

uniform float fNightScale;
uniform vec3 v3LightPosition;
uniform sampler2D tDiffuse;
uniform sampler2D tDiffuseNight;

varying vec3 c0;
varying vec3 c1;
varying vec3 vNormal;
varying vec2 vUv;

void main (void)
{
	//gl_FragColor = vec4(c0, 1.0);
	//gl_FragColor = vec4(0.25 * c0, 1.0);
	//gl_FragColor = gl_Color + texture2D(s2Tex1, gl_TexCoord[0].st) * texture2D(s2Tex2, gl_TexCoord[1].st) * gl_SecondaryColor;


	vec3 diffuseTex = texture2D( tDiffuse, vUv ).xyz;
	vec3 diffuseNightTex = texture2D( tDiffuseNight, vUv ).xyz;

	vec3 day = diffuseTex * c0;
	vec3 night = fNightScale * diffuseNightTex * diffuseNightTex * diffuseNightTex * (1.0 - c0);

	gl_FragColor = vec4(c1, 1.0) + vec4(day + night, 1.0);

}
"""



radius = 100.0
###
atmosphere =
	Kr				: 0.0025
	Km				: 0.0010
	ESun			: 15.0
	g				: -0.990
	innerRadius 	: radius
	outerRadius		: radius * 1.05
	wavelength		: [0.650, 0.570, 0.475]
	scaleDepth		: 0.25
	mieScaleDepth	:	0.1
###
atmosphere =
	Kr				: 0.0025
	Km				: 0.0010
	ESun			: 20.0
	g				: -0.950
	innerRadius 	: 100
	outerRadius		: 102.5
	wavelength		: [0.650, 0.570, 0.475]
	scaleDepth		: 0.25
	mieScaleDepth	: 0.1


diffuse = THREE.ImageUtils.loadTexture('/map-small.jpg')
diffuseNight = THREE.ImageUtils.loadTexture('/map-lights.jpg')

maxAnisotropy = renderer.getMaxAnisotropy();
diffuse.anisotropy = maxAnisotropy;
diffuseNight.anisotropy = maxAnisotropy;

uniforms =
	v3LightPosition:
		type:	"v3"
		value:	new THREE.Vector3(1e8, 0, 1e8).normalize()
	v3InvWavelength:
		type:	"v3"
		value:	new THREE.Vector3(1 / Math.pow(atmosphere.wavelength[0], 4), 1 / Math.pow(atmosphere.wavelength[1], 4), 1 / Math.pow(atmosphere.wavelength[2], 4))
	fCameraHeight:
		type:	"f"
		value:	0
	fCameraHeight2:
		type:	"f"
		value:	0
	fInnerRadius:
		type:	"f"
		value:	atmosphere.innerRadius
	fInnerRadius2:
		type:	"f"
		value:	atmosphere.innerRadius * atmosphere.innerRadius
	fOuterRadius:
		type:	"f"
		value:	atmosphere.outerRadius
	fOuterRadius2:
		type:	"f"
		value:	atmosphere.outerRadius * atmosphere.outerRadius
	fKrESun:
		type:	"f"
		value:	atmosphere.Kr * atmosphere.ESun
	fKmESun:
		type:	"f"
		value:	atmosphere.Km * atmosphere.ESun
	fKr4PI:
		type:	"f"
		value:	atmosphere.Kr * 4.0 * Math.PI
	fKm4PI:
		type:	"f"
		value:	atmosphere.Km * 4.0 * Math.PI
	fScale:
		type:	"f"
		value:	1 / (atmosphere.outerRadius - atmosphere.innerRadius)
	fScaleDepth:
		type:	"f"
		value:	atmosphere.scaleDepth
	fScaleOverScaleDepth:
		type:	"f"
		value:	1 / (atmosphere.outerRadius - atmosphere.innerRadius) / atmosphere.scaleDepth
	g:
		type:	"f"
		value:	atmosphere.g
	g2:
		type:	"f"
		value:	atmosphere.g * atmosphere.g
	nSamples:
		type:	"i"
		value:	3
	fSamples:
		type:	"f"
		value:	3.0
	tDiffuse:
		type:	"t"
		value:	diffuse
	tDiffuseNight:
		type:	"t"
		value:	diffuseNight
	tDisplacement:
		type:	"t"
		value:	0
	tSkyboxDiffuse:
		type:	"t"
		value:	0
	fNightScale:
		type:	"f"
		value:	1;

ground =
	geometry:	new THREE.SphereGeometry(atmosphere.innerRadius, 50, 50)
	material:	new THREE.ShaderMaterial
		uniforms:		uniforms
		vertexShader:	vertexGround
		fragmentShader:	fragmentGround

ground.mesh = new THREE.Mesh(ground.geometry, ground.material)
scene.add(ground.mesh)

sky =
	geometry:	new THREE.SphereGeometry(atmosphere.outerRadius, 500, 500)
	material:	new THREE.ShaderMaterial
		uniforms:		uniforms
		vertexShader:	vertexSky
		fragmentShader:	fragmentSky

sky.mesh = new THREE.Mesh(sky.geometry, sky.material)
sky.material.side = THREE.BackSide
sky.material.transparent = true;
scene.add(sky.mesh)

c = null
f = 0
g = 0




render = ->
	requestAnimationFrame(render)
	# material.uniforms.v3LightPos.value.y += 0.01

	f += 0.0002
	g += 0.008


	vector = new THREE.Vector3(radius * 1.9, 0, 0)
	euler = new THREE.Vector3(g / 60 + 12, -f * 10 + 20, 0)
	matrix = new THREE.Matrix4().setRotationFromEuler(euler)
	eye = matrix.multiplyVector3(vector)

	camera.position = eye;
	# camera.position = new THREE.Vector3(radius * 1.9, radius * 1.9 * Math.sin(g), radius * 1.9 * Math.cos(g))
	camera.lookAt(new THREE.Vector3(0, 0, 0))


	# ground.mesh.rotation.z += 0.005;
	# ground.mesh.rotation.x += 0.001;
	# sky.mesh.rotation.z += 0.005;
	# sky.mesh.rotation.x += 0.001;

	vector = new THREE.Vector3(1, 0, 0)
	euler = new THREE.Vector3(f, g, 0)
	matrix = new THREE.Matrix4().setRotationFromEuler(euler)
	light = matrix.multiplyVector3(vector)

	cameraHeight = camera.position.length()



	sky.material.uniforms.v3LightPosition.value = light
	sky.material.uniforms.fCameraHeight.value = cameraHeight
	sky.material.uniforms.fCameraHeight2.value = cameraHeight * cameraHeight

	ground.material.uniforms.v3LightPosition.value = light
	ground.material.uniforms.fCameraHeight.value = cameraHeight
	ground.material.uniforms.fCameraHeight2.value = cameraHeight * cameraHeight

	renderer.render(scene, camera)

render()

 

 

Attached Thumbnails

  • Screen Shot 2013-02-13 at 11.39.51 PM.png





Old topic!
Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.



PARTNERS