• Advertisement
  • All Activity

    1. Past hour
    2. Algorithm Increasing difficulty algorithm

      Thanks for the ideas. I think this is going to be a big help.
    3. Today
    4. Wipeout C&C

      I have this
    5. Feedback questions on Unity game

      @Remelic Awesome, this is all very helpful! Thank you again
    6. Algorithm Increasing difficulty algorithm

      I would separate these into their own algorithm. I would evaluate each variable one at a time and come up with a scale that determines the value for the next wave. numBricks = f(waveNumber). Type of Bricks would have to be based on a sliding two-point scale where you have min and max values that increase but this would have to be done extremely slowly and there would eventually have to be an upper limit. If that doesn't work, you can base the scale's starting point on the current level of the players power-up. If they do 10 damage then start spawning 10-hit bricks to 50-hit bricks. You can't overpower or under-power so it all has to be relative to the players variables. Just a little stronger than the player's current variables. The speed of bricks will also eventually reach a limit as they cannot fall faster then the player can see or the height of the screen so I would say the more hits a brick needs, based on player's strength, the slower it falls. That's a simple algorithm. How often power-up spawn can be the greater the wave the less often the power-ups appear or based on the strength of the player. The stronger they are the less they spawn. Or have it spawn power-ups over random time intervals. You want to make the game fun not just increase all the variables until they player is overwhelmed. Or maybe you do? I would make all variables relative to the player and the wave level. Maybe try dividing the players variables by the wave level and using those values as scales? or try using 1/wave to give you a unit scale to work with. The number gets smaller as the wave increases and this can be multiplied by other numbers to give you your values. Or maybe look into training a genetic-algorithm or neural-net that takes the player's variables and wave number to generate those values for you. Hope that gives you some ideas. Remelic
    7. IPv6 Multicast not working

      Yes. Use broadcast!
    8. Feedback questions on Unity game

      Hi, I'm completely new here; this is my first post so I may not be the most qualified to answer however here is my two pennies. #1. It depends on how realistic you want the game to feel. I code everything in Java or C, C++... I don't use Unity to make games but you can build your own physics class in Unity via C# scripts and apply that to your objects that you want physics to be applied too. This means you apply physics to the object that you want to collide with things and be affected by forces. Forces like gravity, torque and transferring momentum. You will need to know vector math and trigonometry as well as have an understanding or circles; sin, cos, tan, the arctan2 function, PI, degrees to radians, etc. Not sure how much you know about these topics? Unity basically does all of this for you via Rigid Body buy you may have to adjust your physics variables to get it to feel right. Increase mass to fall faster or in Project Settings under Physics you can change those variables to see if anything helps. If I were to deal with 3D terrain and characters, I would approach it with the idea that the characters (walking people not vehicles) will always be standing strait, vertically along the Y, no matter what the terrain is doing. Depending on the angle of the terrain would determine if the character can walk on it or not. This way you can say that a hill is too steep to walk up and the character stops or slides back down. Not sure if that helps? 2. You can change the difficulty a few ways. Use different zombie types. Some move slower but cause more damage. Make zombies that jump or zig-zag or change their walking pattern randomly to make it hard to guess where they will be. Add obstacles that the player cant shoot through like trees or buildings. Just get creative and slowly introduce your difficulty over time so player just get used to it before they are presented with some new challenge. 3. Keep it Simple. I know this is said a million times but it really works here. Have a nice clean background with a feel for what the game is about. Have a clearly and cleanly written title without too much distraction. Animate it if possible but don't overdo it or use a 3D scene that reacts to the mouse movement slightly. I highly recommend writing or using a separate piece of music for the title. This adds a nice touch to the game. Remelic
    9. Forming A Team

      Hello, We are looking for people to be apart of a team, to help create a horror game we are looking for 3d modelers, coders, artist, animators, fx artist, level designers, and audio design, there will be a payment plan once release of game if your interested come join our discord We hope to see you there https://discord.gg/6rcc6xr -Epicghost505
    10. A lot of time has been spent remaking the components needed to make the game run smoother and look nicer. Way more time than I originally intended, but I feel too deep into the mess to turn back now. The results are showing, but it seriously delayed the game's progress and the makeover still isn't complete. I'm hoping that with these menus out of the way and all the fancy scripting stuff simplified into usable tools, the post-alpha development will come easy. Much like a house, the game's gotta have good bones. A foundation to build an entire series of games on top of, actually. Each one more polished than the last.Read more on the blog.
    11. Creating 3D Collision Point

      Shit, you cannot do the plane test for a brute force approach. I forgot about this. It will work with the Gauss Map since this edge will be rejected (verify for yourself how the associated arcs are not overlapping!). The GM test makes sure that you only test supporting edges in the direction of cross product. So in your picture all vertical edges on P1, but the rightmost one will be rejected. And in this case the test is correct then and will give the right result. Sorry for this! If you want to do the O(n^3) test you would need to project on each axis and check the intervals for overlap as I stated in the presentation. EDIT: I just checked my presentation and it is correct there. Seems the young Dirk was smarter than the old DIrk!
    12. Yesterday
    13. Help disassembling laptop

      I ended up purposely rupturing the plastic piece (with nail pliers) that made the wires "stuck" (too short to maneuver), that way i could move the entire part aside without removing the cables.. I think the only way to do it (the right way) would be to disassembly the entire screen so that id end up with those wires lose on both ends, so when re assembly i could plug then one side first, then leave then through the hole for later reassembling onto the screen..(what kinda of maniac design laptops) And so I did got to the fans and cleaned it...Still got crashes when gaming...Then I underclocked the gpu from 550(original) to 500mhz, and voila..kinda weird since the temperature never went over 78..I have no idea whats going on with that laptop..maybe temperature sensors arent really accurate anymore..I used to game till it got so hot i couldnt place my hand on it..Than it started crashing frequently even at 72+ degrees (pretty cold) But underclocking really did the trick, no crashes since then... Its past the time to buy a new one anyway. Oh, I managed to fuck the quick launch panel (media buttons on top of the keyboard), leds dont turn up, and volume doesnt work anymore..at least the mute works...Thanks god the power button works (same panel) ._."
    14. Solo Dev Game Challenge

      Thank you. I'm hoping to polish it up at the end so I can do a steam release as well. I should have the initial post ready soon. How is your game coming along?
    15. Feedback questions on Unity game

      I am taking an absolute beginner's game development course and we have just finished game jams in small groups. Our current assignment is to get feedback from people working in any aspect of game development. I would very much appreciate any feedback! The game is up on itchi.io (sound warning) https://wobbegong.itch.io/zombie-shooter It's essentially a very basic PvE. I also have some things I'm wondering about, but you don't necessarily have to answer these. 1. Do you have any tips on working with physics? My group wrestled a bit with Rigidbody physics not totally working the way we wanted to -- jumping ended up kind of floaty and inclines seem to mess up movement. Alternatively... how can I build terrains with depth that won't result in wonky physics? 2. How can I keep up the level of challenge in an interesting way as the player progresses through the waves? 3. What are some of your personal guidelines for creating title screens? Thank you very much in advance!
    16. Introduction to Octrees

      What would be the difference between the 'BoundingBox.Contains()' and 'Physical.Intersects()' if the Physical object is just another square? Would they both need to implement Separating Axis Theorem?
    17. Creating 3D Collision Point

      If the separating axis is the x-axis & I make a plane using this & an e1 point Then the separation between e1 & e2 will be > 0.0f which I think is correct because these edges do not touch But the X-axis will be a separating axis & the SAT algorithm will return without creating a manifold Maybe we are only recording the edges which are penetrating?
    18. Ideas for pixels

      It looks like I can send them to someone but that's about it. Unless others are able to use them for some other purpose that I don't have available to me.
    19. ***Original blog post can be found by clicking HERE*** ***Untouched Earth Website can be found by clicking HERE*** Good day everyone! If you had a chance to read my last blog post, then you’re well aware I had the opportunity to have some very kind individuals play test the game two weeks ago. In addition to discussing the game’s progress, I’d like to use this post and future blog posts to discuss the tips I’m learning as I continue implementing suggestions, fixing bugs, and creating the game. Development Tips 1) Use raycasting to stop character movement instead of relying on colliders. 2) Improve performance and limit excessive calls to the garbage collector by disabling game objects instead of destroying them. Game Updates 1) Improved playability and enhanced visual appeal in level one 2) Created an animation for the maya coin 3) Fixed bugs associated with bullets 4) Implemented object pooling for bullets 5) *See Picture* Created a Boar Character 6) *See Picture* Created a Goat Character 7) Updated combat mechanics to utilize triggers rather than colliders 8) Fixed bugs associated with climbing, hanging, and swinging 9) Fixed bugs associated with Poker obstacles 10) *See Video* Fixed confusion about which walls are climbable through enhanced artistic presentation 11) Fixed confusion about which objects are swingable through enhanced artistic presentation 12) *See Picture* Updated bounceable object _____________________________________________________________________________________________ Tip One: Use raycasting to stop character movement instead of relying on colliders. Consider the scenario above. The hero is running toward a wall with the expectation that he will stop when the two colliders meet. From what I’ve found, this method works just fine most of the time and tends to be bug free. However, I’ve also discovered that collision detection can be inconsistent, and the hero occasionally runs through thin walls. The problem is that the code allows the hero to continue moving with the expectation that the collider will stop his forward progression. While it would be possible to stop the hero from moving forward when the colliders collide, I believe the following solution produces better, bug free results. Basically the raycast detects whether a wall is in front of the character. If it is, and if the hero is close enough to the wall, the code signals to the hero to stop updating his forward motion. This way, the hero isn’t relying on the colliders to stop his movement, but is using code to stop him in his tracks and no collision is even necessary. This solution may be more resource intensive, but I believe it is a worthwhile trade off for the benefits. _______________________________________________________________________________ Tip Two: Improve performance and limit excessive calls to the garbage collector by disabling game objects instead of destroying them. In the scenario above, the hero is climbing up a wall and is about to pick up coins. If each coin is destroyed when it is collected, it won’t take long before the garbage collector activates to get rid of all the excess, destroyed objects. Considering that a level might have 200-300 coins in it, then the number of destroyed game objects quickly adds up. Rather than destroying each coin when it is collected, simply setting it inactive when the hero picks it up prevents the garbage collector from running as often. The code above is a portion of the coin script, and shows how this solution is implemented. I believe it results in less calls to the garbage collector. ___________________________________________________________________________________ Update Pictures & Videos Original character was purchased in the asset store and updated by me. Thank you Mimu studios! Original character was purchased in the asset store and updated by me. Thank you Mimu studios! Updated Bounceable Obstacle _________________________________________________________________________________________ As always, thank you for reading. I would love to hear from you and would love to hear any comments or ideas you have. Feel free to leave a comment or email me at watermoongames@gmail.com. ***Original blog post can be found by clicking HERE*** ***Untouched Earth Website can be found by clicking HERE*** ________________________________________________________________________________________
    20. Test and feedback

      Hi guys, I just released my first game and would like to know if anyone wants to test it. This is the first attempt to produce a game. A total new world for me. The link to test is here. https://play.google.com/store/apps/details?id=com.steamiegames.beatem I hope you like and have fun. Any feedback will be appreciated. Kind regards, Steamie & Tilted
    21. Ideas for pixels

      Apparently, you can trade pixels from the Pixel Dashboard in the user menu.
    22. Geometric stiffness term in Stable Constrained Dynamics

      Cool, thanks for confirming this!
    23. @khawk, A few months back a music writer had created some custom music for the game I'm working on. He was new to the site and he had not garnered much reputation. After he had created a few musical pieces for the project I'm working on I asked him to create a post so that I could show my gratitude with a thank you trophy. I clicked the like button, choose that 'Thank you' Trophy and submitted. I remember seeing his reputation go from 0 points to 1 point and thinking that my attempt to show my gratitude was a little underwhelming, especially since I was very thankful and all he got was 1 point. The other day I was thinking it would be neat if we could exchange some pixels, like maybe 250, for a special 'Thank You' that comes packed with 10 reputation points or something. We couldn't always be giving out these big reputation bonuses as we'd have to earn the pixels first. Anyways, just a thought.
    24. Creating 3D Collision Point

      Say you have edge e1 = { p1, p2 } and edge e2 = { q1, q2 }. You build the cross product n = e1 x e2. Now you have plane through e1 with normal n. E.g. P : n * ( p1 - x ) = 0. You now check the direction by making sure that some internal point of polygedra 1 is behind this plane. E.g. if ( dot( n, p1 - c1 ) > 0 ) n = -n Here c1 is the centroid of polyhedron 1. This gives you the properly orientated plane. Next you get the support point on polyhedra 2 in the direction of the negative normal. The distance of this support point to your plane is the separation/penetration. It is pretty much the same as for the face directions, but you have to construct your plane first and be a bit careful for the details.
    25. Solo Dev Game Challenge

      Looking forward to this one! I'm not much of a card gamer myself, but I'd definitely give yours a play through.
    26. Creating 3D Collision Point

      I can see the edge algorithm is very much like the face algorithm. The Face algorithm finds the largest separation and the edge algorithm seems to do the same. I have a few problems with the example I have attached. Polyhedron P1 is rotated 45 degrees around the Y axis. I get the cross product between edges E1 & E2: this gives either the +X or -X axis. Problem 1: I can't determine the direction of the axis because the dot product will always give zero Problem 2: If I can determine the direction of the X-axis there is a separation between E1 & E2 & the algorithm will fail Maybe I have misunderstood? Thanks
    27. Hey Soldier, that seems to be it. Thank you. After seeing your post I was able to find the following references for anyone interested that is having this problem. Just Let It Flow Stack Overflow Not using C would be the easy solution but that means using the garbage that is C++.
    28. Creating 3D Collision Point

      Did you see the sample code? In a nutshell, just test each edge combination. The Gauss-Map is just an optimization to prune edge pairs quickly. If you have a more specific question what you don't understand I might be able to help!

    Content and Members You Follow

    You must be logged in to view this content.

    Don't have a GameDev.net account? Sign Up

    Recent Blogs

    1.        A lot of time has been spent remaking the components needed to make the game run smoother and look nicer. Way more time than I originally intended, but I feel too deep into the mess to turn back now. The results are showing, but it seriously delayed the game's progress and the makeover still isn't complete. 

          I'm hoping that with these menus out of the way and all the fancy scripting stuff simplified into usable tools, the post-alpha development will come easy. Much like a house, the game's gotta have good bones. A foundation to build an entire series of games on top of, actually. Each one more polished than the last.

      Read more on the blog.
      0 comments
    2. ***Original blog post can be found by clicking HERE*** ***Untouched Earth Website can be found by clicking HERE*** Good day everyone! If you had a chance to read my last blog post, then you’re well aware I had the opportunity to have some very kind individuals play test the game two weeks ago. In addition to discussing the game’s progress, I’d like to use this post and future blog posts to discuss the tips I’m learning as I continue implementing suggestions, fixing bugs, and creating the game.   Development Tips 1) Use raycasting to stop character movement instead of relying on colliders. 2) Improve performance and limit excessive calls to the garbage collector by disabling game objects instead of destroying them.   Game Updates 1) Improved playability and enhanced visual appeal in level one 2) Created an animation for the maya coin 3) Fixed bugs associated with bullets 4) Implemented object pooling for bullets 5) *See Picture* Created a Boar Character 6) *See Picture* Created a Goat Character 7) Updated combat mechanics to utilize triggers rather than colliders 8) Fixed bugs associated with climbing, hanging, and swinging 9) Fixed bugs associated with Poker obstacles 10) *See Video* Fixed confusion about which walls are climbable through enhanced artistic presentation 11) Fixed confusion about which objects are swingable through enhanced artistic presentation 12) *See Picture* Updated bounceable object _____________________________________________________________________________________________   Tip One: Use raycasting to stop character movement instead of relying on colliders.     Consider the scenario above. The hero is running toward a wall with the expectation that he will stop when the two colliders meet. From what I’ve found, this method works just fine most of the time and tends to be bug free. However, I’ve also discovered that collision detection can be inconsistent, and the hero occasionally runs through thin walls. The problem is that the code allows the hero to continue moving with the expectation that the collider will stop his forward progression. While it would be possible to stop the hero from moving forward when the colliders collide, I believe the following solution produces better, bug free results.       Basically the raycast detects whether a wall is in front of the character. If it is, and if the hero is close enough to the wall, the code signals to the hero to stop updating his forward motion. This way, the hero isn’t relying on the colliders to stop his movement, but is using code to stop him in his tracks and no collision is even necessary. This solution may be more resource intensive, but I believe it is a worthwhile trade off for the benefits. _______________________________________________________________________________   Tip Two: Improve performance and limit excessive calls to the garbage collector by disabling game objects instead of destroying them.       In the scenario above, the hero is climbing up a wall and is about to pick up coins. If each coin is destroyed when it is collected, it won’t take long before the garbage collector activates to get rid of all the excess, destroyed objects. Considering that a level might have 200-300 coins in it, then the number of destroyed game objects quickly adds up. Rather than destroying each coin when it is collected, simply setting it inactive when the hero picks it up prevents the garbage collector from running as often. The code above is a portion of the coin script, and shows how this solution is implemented. I believe it results in less calls to the garbage collector. ___________________________________________________________________________________   Update Pictures & Videos   Original character was purchased in the asset store and updated by me. Thank you Mimu studios!   Original character was purchased in the asset store and updated by me. Thank you Mimu studios!   Updated Bounceable Obstacle   _________________________________________________________________________________________   As always, thank you for reading. I would love to hear from you and would love to hear any comments or ideas you have. Feel free to leave a comment or email me at watermoongames@gmail.com. ***Original blog post can be found by clicking HERE*** ***Untouched Earth Website can be found by clicking HERE*** ________________________________________________________________________________________
      0 comments
    3. Hi everybody, My name is Olivier Girardot, and I am a music composer and a sound designer. Here is my new sound effect video, where I explain what the Shepard Tone is, which is a very cool effect, often used in films.   And don't forget to visit my Sound Effect shop: http://www.ogsoundfx.com (Get 120 MB of free professional sound effects by subscribing to the newsletter)  
      0 comments
    4. Hello All,

      There has been quite a few updates to the project so I figured its best to compress them all on here to let you all know how we have progresses. Fox is here Fox is a guide, a friend, and a all round great guy. He is a central character to the gameplay. We’ve started with a basic dialogue tree, but we will be expanding this out as the game develops. Range of topics can vary! Player Levelling We’ve tweaked and improved the player levelling. In case you missed it, meditating/playing daily will activate a streak system, which will level up your character. Why are streaks so important? Because consistency is crucial to get the full benefits of meditation. This is why streaks are at the heart of our game. 

      Your character level is linked to your playne, as your character grows your playne grows with you. More details in the ‘World Evolution’ topic below. The World We wanted to create a world that is calming and we wanted nature to be at the heart of it. We spent a lot of time putting together the right assets to create a lush environment that just helps you to Zen-tf-out Day time Night Time + Fireflies Aurora Borialis Dynamic Day/Night system and campfire linked to your streaks As you maintain streaks the world will transitions from night to day and your campfire will grow. Each player level signifies a day, so when you level-up the day and campfire will reset again. But when the time/campfire resets, you should notice changes in the game world which wern’t there before. More details in the ‘World Evolution’ topic below. World Evolution is Here You begin the game with an empty world but it will grow as you progress. As you level up you’ll notice trees, grass, fireflies and a lot more getting added to your world. The trees will be the most visually striking element of your playne. They will start as a wee sprout and will grow to become glorious, majestic trees, as long as you maintain your streak and level up your character! Ambient Sounds + Music We've added a range of deep, encompassing nature ambient sounds to your playne. There are layers of audio which transitions with the dynamic time system. Music has also been added. Full list of fixes (from alpha) and updates Fixes / additions from alpha build: some dialogue audio added fix: Camera transitions has been added – swish! fix: button added to go to the beginning of the dialogue tree Updated HUD with level and days to level info You now create a streak after completing your first session You are now notified when you level up fix : Displayed level numbers are now correct fix : Moved player level info from bottom footer to its own space on the header fix : Progress bar now only resets if your streak resets fix : Issues resolved where first session was not getting saved fix : Streak status is now checked when you load the game Lighting has been redesigned to add more visual sass Moon position has been fixed indirect lighting recalculates correctly now on load various other optimisations - 30% GPU load reduced Ground textures have been reworded Optimisations to improve GPU utilisation fix : Start time updates so its sunny for longer
      0 comments
    5. I've been considering creating a game from start to finish entirely solo, and posting all the progress on the blog here as I work my way through.   I really enjoyed working on the GameDev.Net Challenge and thought I could really push myself to make my own title within a certain period of time. I will still be doing the GameDev.Net Challenges as they popup as I really enjoy the idea of time challenges. Most of my programming experience has been at a lower level (engines, toolkits, world builders, ect...) and I really would like to push myself to work on some of my own ideas in terms of full games. I intend on doing all of the programming, graphics, and audio myself for this challenge, and will post all the progress on a regular basis as I develop! On the programming side I will use C++ and SFML. For graphics I will be using a combination of 2D and 3D applications (Photoshop, Blender, ect...). The sound and music will be created using FL Studio and assorted VSTs. I will have to pull out my midi controllers and blow some dust off those nobs and keys! The game itself will be a Collectible Card Game. I was working on one prior and have always wanted to go out and make my own. I have already come up with the concept, basic story, and how the cards will work together, but as the game grows changes will be made as I'm developing this organically. In my next blog entry I will title it: (Name of Game) Dev Blog ##. I look forward to this challenge, and cannot wait to get started!  I should have a blog post ready to go within 5 days as I want to actually post content in each entry. Thanks for reading.  
      2 comments
    6. In this Blog entry I would like to introduce our main character and some of the basic gameplay mechanics. The player character of Warriorb was created in a magical accident. It involved a dead girl, a mighty spirit, a failed resurrection attempt and a group of kids playing football in the neighborhood, but let’s not go too deep into the details yet.
      Long story short, our unlikely protagonist is a spirit who ended up imprisoned in a ball. This weird body has a few unique skills – and also some limitations one has to overcome using all the creativity to be found in a tiny little ball. The biggest problem is being a bit low on limbs – there are only two of them, so wise and creative usage is a must. Normally the limbs function like legs: In certain situations however hands can come more… handy: And there is the hybrid mode – in some situations one limb can function as a hand while the other works as a leg: If you ever tried to do two different coordinated moves with your two hands at the same time you must have an idea about how hard it is to walk on one hand while aiming with the other. Not all situation requires limb involvement however – as the game is a platformer there will be plenty of situation to use more ball-like abilities, like rolling... … and bouncing. There are other ancient, unfortunate spirits trapped in a bit more appropriate bodies out there – but most of them gone mad during their thousands of years spent in imprisonment. The only way to help them is to end their suffering: That’s all for now. See you next time!  
      0 comments
    7. Greetings!  I'm happy to announce that Pixelpunk XL has been released today on Steam! I thank all the people who support me and give feedback on my posts. Steam page: http://store.steampowered.com/app/803850/Pixelpunk_XL/
      0 comments
    8. The game is going to be a mix of three games DOOM Slender man and resident evil Story Line So Far: Your Maxwell (( the name is wip)) a 25 year old gang member who gets shot in a shoot out with the cops you wake up in a hospitle and it is empty in journy to the basement level and get it in the back of the head then you wake up in a weird looking room. that will be what happens in the first cut video thing lol if you want more just ask i am open to what ever ty all who comment
      0 comments
    9. It’s been a while since the last update, so lots to get through. We’re still progressing, probably slower than we had hoped, but never the less, its still going forwards. Kat’s been busy working on tons of graphics, icons, lighting, and we now have all the 4 worlds pretty much done with backgrounds and world layouts. She is currently working on placing items in the 2 remaining worlds, working on more puzzle ideas and polishing of the graphics. I’ve been working on performance a fair bit, making sure we stay in a good position. Just finished up with reducing memory usage, as I found that unloading scenes wasn’t quite releasing all resources and therefore if you went between 2 worlds it was using 1GB or so extra memory. This was ok on my rig, as I had 4GB VRAM, but Kat’s PC started to chug a bit when she went between worlds because she only had 2GB of VRAM. This was because I had some textures and materials being cached in variables, and the scene unload wasn’t catching that they were now unused, so I had to set them all to dummy textures/nulls and then call Resource.UnloadUnusedAssets() to clear them. I made heavy use of the memory profiler, which also lead me to some more memory improvements to further reduce memory usage. On my PC now we have a steady 200+ FPS (GeForce GTX 970, Core i7 920, 14GB Ram, 2560×1600), and 100+ on Kat’s (GeForce GTX 580 , Core i5 750, 12GB Ram, 2560×1600) We’ve shown the game off to a few people locally now, some friends came around for a games evening. Even shown it to some of our nieces and nephews and they all loved it, and we got some good feedback and ideas to make things better. Upgraded several times to new versions of Unity in the past few months. Not been great sailing with that, seemed to hit a new bug with whichever one I went with. Been able to navigate around some, but currently waiting for them to fix Resource.LoadAsyc() so that it works with uncompressed Textures/PNGs correctly. Currently on 2017.3.f3, and will probably wait for 2018.1 before I try again. Spent quite a large amount of time making the loading of worlds (ie scenes) be async, so that we could play an animation/particle effect during load. This was quite a challenge, as I was doing lots on load so that it didn’t effect the actual game, thinking the load would be the best place. Unfortunately, that caused stutters etc with the load animations, once we put them in. After lots of profiling and understanding how the load works, we’ve got it to basically never stutter now. Mainly removing all Awakes() as they were just setting cache vars for GameObjects etc, and actually linking them into public inspector vars. Also turning most of our Init() methods into IEnumerators so that we could yield every so often, and using Resource.LoadAsyc() for loading. Will have to revisit it nearer the end, but its working well now. Spent some time putting in lots of particle effects to brighten up the game. We used the Ultimate VFX  package from the Unity Store as a basis, and then played around with them. Got most of it done, but I have to go through and find all the graphics and sprite sheets we’ve used and pack them into our own sprite sheets and resize them to fit our game, so that performance is good. The same with the sprites used in the UI. Dotted throughout the worlds, there are puzzles that need to be completed to gain items, and we had done the world 1 puzzles, which were just basic push/pull of blocks and positioning them. These puzzles are intended to get harder as you progress through the 4 worlds, so I worked on the 2nd set of puzzles making 2 new elements for them to make them more interesting. ‘Mag’ blocks are placed around the area where you have to do the puzzles, and these either attract or repel the blocks you need to move. You need to work out which ones can help you or hinder you to complete the puzzles. Implemented a stats screen in-game, so that you can keep track of all the items, puzzles and other elements in the game. Then you can track your progress and see how much you’ve done… and what is left to do. Lots of bug fixing. We’ve played though the first level many times now trying to keep the number of bugs low so that we hopefully don’t have a big job at the end to fix lots of things. At the moment we are ‘bug free’ and everything we’ve found so far has been fixed, so that’s a nice place to be in 🙂 Major things left now are:
      3rd and 4th world puzzles
      In-Game Tutorial
      Customization items for the alien
      Boss levels
      Achievements
      Sounds So, we will be powering on with things and will keep you updated either here or on our social media pages at FaceBook or Twitter. So if you’re not already following us there, head on over and give us a ‘like’ or ‘follow’. Till next time… watch out for ‘Somethings’ that may eat your aliens… Rob & Kat
      1 comments
    10. And so we meet once again to discuss what's new in the development of Lyfe. But as we promised on our Twitter this is something big. I don't have to tell you what we're discussing, you probably already read the title of this entry. I have to thank Jake Best who took the time draw the concept we developed for how the player will create the basic shapes for his cells. So let me explain what is going on here. You start off with just one central orb. This is your base node and your cell starts to 'grow' from it. There are arrows on four sides of this base node. If you pull on them new nodes will be created in that direction. This will create a kind of 'spine' for your cell. As shown in fig. 3 and 4 not only is the default setting when creating new nodes to the left or the right to make your cell symmetrical but you can also move your nodes/ bend the spines and the shape will be translated to the other side as well. You can also scale single nodes (fig. 5/6). This expands the cytoplasm around this node. The next thing is something we decided we needed but are not sure how to implement: a weight/thickness slider. This includes the overall amount of cytoplasm with a slight bias for filling up space between spines. Next step: placing organelles. Most organelles like Mitochondria or a Golgi Apparatus can only be placed on the inside of your cells but all organelles that are used for interaction with the outside world like Flagella or Pseudopodia have to be placed on the membrane. Organelles will have options to deform them, like elongating. Rotating them around the anchor point on the cell is also an option. Asymmetry is an option that not only affects the placement of the organelles but also the sculpting of your cell. In fig. 11 the right half of the cell is deleted resulting in this more potato shaped creation. Below are some possible results you might achieve with this toolset. For the two on the right, the dashed line represents their shape if the weight-slider was put to maximum and the one on the far left is a more experimental idea with actually two split nodes. If this will be possible in future is not sure yet, but we will see. That's it for this entry. Feel free to comment all your questions and suggestions. Keep on evolving! cellcreator.pdf
      0 comments

    Latest Forum Topics

    Latest News

    1. LunarG has released new Vulkan SDKs for Windows, Linux, and macOS based on the 1.1.73 header. The new SDK includes: New extensions: VK_ANDROID_external_memory_android_hardware_buffer VK_EXT_descriptor_indexing VK_AMD_shader_core_properties VK_NV_shader_subgroup_partitioned Many bug fixes, increased validation coverage and accuracy improvements, and feature additions Developers can download the SDK from LunarXchange at https://vulkan.lunarg.com/sdk/home.
      0 comments
    2. Submissions are now open for IndieCade 2018.  The first submission deadline is May 28 with submission fees starting at $75 USD.  Learn more about submission requirements, fees, and events at https://www.indiecade.com/. IndieCade supports independent game development and organizes a series of international events showcasing the future of independent games. It encourages, publicizes, and cultivates innovation and artistry in interactive media, helping to create a public perception of games as rich, diverse, artistic, and culturally significant. IndieCade's events and related production and publication programs are designed to bring visibility to and facilitate the production of new works within the emerging independent game movement.
      0 comments
    3. Spectral rendering enters the computer graphics world. After a period with not that many feature improvements, Dual Heights Software have now finally released a new major version of their water texture generator software called Caustics Generator. The new version includes full spectrum color rendering allowing the simulation of spectral refraction which produces prismatic coloring effects and thus bringing caustics simulation to a new level. The spectral functionality is available in the Pro version on both Windows, Mac and Linux. Read more about the Caustics Generator at https://www.dualheights.se/caustics/  
      0 comments
    4. In the latest CG Garage podcast, Chris Nochols interviews Sebastien Deguy, CEO of Allegorithmic. In the podcast Sebastien discusses the history of Allegorithmic in a refreshing, non-corporate way. Recorded at the Vertex Conference in London, Sebastien tells Chris how a single mistake led to the founding of this fast-growing and innovative company, which is branching out into visual effects and architecture, after rising to a state where 95% of AAA games use a Substance product for texturing. He also talks about the little tricks Allegorithmic uses behind the scenes, the future of the software, and even how we can understand the universe through mathematics. Check out the podcast at https://www.chaosgroup.com/blog/sebastien-deguy-allegorithmic.
      0 comments
    5. The International Game Developers Association (IGDA) and Plan C Ventures, LLC today announced the 2018 IGDA Game Leadership Summit will be held in Austin, TX on Thursday – Friday, Sept. 13 - 14. Featuring a diverse slate of executives who exemplify the best leadership practices in the industry, the global summit is the first-ever event focused on helping individual leaders at all levels within the industry maximize business performance and professional success as they navigate the rapidly changing interactive entertainment field.  The announcement follows the release of IGDA’s highly publicized 2017 Developer Satisfaction Survey, citing diversity and job stability concerns across the industry. Informed by the survey’s results, the IGDA is developing a robust agenda designed to help leaders strengthen their individual leadership abilities and keep talent engaged in long-term careers. Summit Tracks 1.   Management Excellence: Managers, executives, business owners and entrepreneurs will learn competencies essential to running smart, effective game businesses, at scales from small team to thousand-plus person studio. From planning ahead for success to navigating risk and positioning for growth, topics include Building Sustainable Teams, What to Consider Before Starting a Studio and Building Strong Partnerships 2.   Professional Leadership: Game professionals at all stages of their careers and across all disciplines who seek to better manage their careers and acquire leadership skills will learn to improve their decision making, planning and problem solving. Topics include What I’ve Learned in 25 Years in Game Development, Negotiating Fundamentals and Adapting to Change in an Industry Driven by Change. “Strong, broad-based business management and professional leadership skills are the cornerstones of a healthy career and an essential foundation of high performance for companies in the interactive entertainment industry,” said Jen MacLean, executive director, IGDA. “With the re-launch of IGDA’s mission to support and empower game developers around the world in achieving fulfilling and sustainable careers, we’re excited to partner with Plan C Ventures to bring this one-of-a-kind program to our members and the worldwide game-development community.” (See GameDev.net's interview with Jen MacLean here.) Registration is now open. Early bird registration before July 13 is $125 for IGDA members and $200 for non-members. The IGDA Game Leadership Summit is guided by an expert advisory board. While most of the speakers and program content will be hand-selected by the board, a call for speakers is also now open. This comprehensive effort will insure a diverse field of innovation and experience for attendees. As a rolling call, speaker submissions are reviewed upon receipt, with the first deadline on April 30, 2018.
      0 comments
    6. Hello developers,  my name is Sergio Ordonez from SOSFactory.com, I just wanted to let you know about the release of my Photoshop based Avatar creator. A premium, high resolution, high quality, full body cartoon Avatar Creator for male and female characters, fully customizable from the skin color or hair dresses to the clothing. Aimed for game and app developers, suitable for personal use too. With SOSFactory avatar system you can create unlimited characters, those are just a small selection:  Already available 20 out 40 sets at my website: http://www.sosfactory.com/premium-stock-avatar-creator/ Feedback and critique is more than welcome! Thanks. Sergio
      0 comments
    7. Following a successful beta, Allegorithmic last week announced the official release of Substance Plugin for 3ds Max, now available for free. First announced in November, Substance Plugin for 3ds Max brings the professional material creation toolset to artists and designers, with over 20 new updates and a direct link to Substance Source. Designed for visualization experts, the new plugin launches with support for V-Ray and Corona, the AEC industry’s leading renderers, as well as the latest versions of Octane and Arnold. The new support comes with automated workflows, which send material data to the user’s renderer of choice at the push of a button. Substance menus have also been added to the design and default layouts of 3ds Max, ensuring a smooth, uninterrupted workflow for artists and designers. “This plugin was very much a collaborative effort between Allegorithmic and our community of beta testers,” said Sébastien Deguy, founder and CEO of Allegorithmic. “Thanks to their efforts, 3ds Maxusers can finally participate in the full benefits of the Substance ecosystem, creating and editing photorealistic materials in the most intuitive way possible.” Featuring a simplified design and tools that just work, Substance Plugin for 3ds Max streamlines the entire process without sacrificing quality. All materials can also now be sent to a user’s 3ds Maxlibrary, including anything drawn from Substance Source. With over 1,000 materials to choose from, artists and designers can use this tool to do their work faster, dropping readymade 8K materials into their projects outright, or editing for a little extra flavor. In the coming year, additional functionality will continue to be added at no cost. Current plans include network/cloud rendering, support for additional third-party renderers and animated Substance support. Additional features will be announced soon. A complete list of changes can be found here. Pricing/Availability Substance Plugin for 3ds Max 2018 is available now for Windows users for free. Substance Source files can be accessed through a Substance subscription; Substance Indie cost $19.90/month, while Pro plans cost $99.90/month.  
      0 comments
    8. Last week VIVE announced the VIVE SRWorks SDK, allowing developers to access the stereo front facing cameras on the VIVE Pro. Developers will now be able to perform 3D perception and depth sensing with the stereo RGB sensors. From the announcement: The SDK includes plugins for Unity and Unreal. VIVE also included a few videos worth checking out:       Learn more at http://developer.vive.com/resources.
      0 comments
    9. Epic Games has announced the Unreal Engine #ue4jam for Spring 2018. Once a quarter, Epic hosts the #ue4jam to give developers a chance to create new projects, sharpen their skills, and compete for prizes. Prizes include an Intel Optane SSD 900P, a Houdini Indie license from SideFX, and more. Learn more from the Unreal Engine blog here.
      0 comments
    10. Game Quality Forum has posted an article on cross-functional collaboration in game development. From their description: Get access to the full article by clicking here.
      0 comments

    Recent Articles and Tutorials

    1. I got into a conversation awhile ago with some fellow game artists and the prospect of signing bonuses got brought up. Out of the group, I was the only one who had negotiated any sort of sign on bonus or payment above and beyond base compensation. My goal with this article and possibly others is to inform and motivate other artists to work on this aspect of their “portfolio” and start treating their career as a business.  What is a Sign-On Bonus? Quite simply, a sign-on bonus is a sum of money offered to a prospective candidate in order to get them to join. It is quite common in other industries but rarely seen in the games unless it is at the executive level. Unfortunately, conversations centered around artist employment usually stops at base compensation, quite literally leaving money on the table. Why Ask for a Sign-On Bonus? There are many reasons to ask for a sign-on bonus. In my experience, it has been to compensate for some delta between how much I need vs. how much the company is offering. For example, a company has offered a candidate a position paying $50k/year. However, research indicates that the candidate requires $60k/year in order to keep in line with their personal financial requirements and long-term goals. Instead of turning down the offer wholesale, they may ask for a $10k sign on bonus with actionable terms to partially bridge the gap. Whatever the reason may be, the ask needs to be reasonable. Would you like a $100k sign-on bonus? Of course! Should you ask for it? Probably not. A sign-on bonus is a tool to reduce risk, not a tool to help you buy a shiny new sports car. Aspects to Consider Before one goes and asks for a huge sum of money, there are some aspects of sign-on bonus negotiations the candidate needs to keep in mind. - The more experience you have, the more leverage you have to negotiate - You must have confidence in your role as an employee. - You must have done your research. This includes knowing your personal financial goals and how the prospective offer changes, influences or diminishes those goals. To the first point, the more experience one has, the better. If the candidate is a junior employee (roughly defined as less than 3 years of industry experience) or looking for their first job in the industry, it is highly unlikely that a company will entertain a conversation about sign-on bonuses. Getting into the industry is highly competitive and there is likely very little motivation for a company to pay a sign-on bonus for one candidate when there a dozens (or hundreds in some cases) of other candidates that will jump at the first offer. Additionally, the candidate must have confidence in succeeding at the desired role in the company. They have to know that they can handle the day to day responsibilities as well as any extra demands that may come up during production. The company needs to be convinced of their ability to be a team player and, as a result, is willing to put a little extra money down to hire them. In other words, the candidate needs to reduce the company’s risk in hiring them enough that an extra payment or two is negligible. And finally, they must know where they sit financially and where they want to be in the short-, mid-, and long-term. Having this information at hand is essential to the negotiation process. The Role Risk Plays in Employment The interviewing process is a tricky one for all parties involved and it revolves around the idea of risk. Is this candidate low-risk or high-risk? The risk level depends on a number of factors: portfolio quality, experience, soft skills, etc. Were you late for the interview? Your risk to the company just went up. Did you bring additional portfolio materials that were not online? Your risk just went down and you became more hireable. If a candidate has an offer in hand, then the company sees enough potential to get a return on their investment with as little risk as possible. At this point, the company is confident in their ability as an employee (ie. low risk) and they are willing to give them money in return for that ability. Asking for the Sign-On Bonus So what now? The candidate has gone through the interview process, the company has offered them a position and base compensation. Unfortunately, the offer falls below expectations. Here is where the knowledge and research of the position and personal financial goals comes in. The candidate has to know what their thresholds and limits are. If they ask for $60k/year and the company is offering $50k, how do you ask for the bonus? Once again, it comes down to risk. Here is the point to remember: risk is not one-sided. The candidate takes on risk by changing companies as well. The candidate has to leverage the sign-on bonus as a way to reduce risk for both parties. Here is the important part: A sign-on bonus reduces the company’s risk because they are not commiting to an increased salary and bonus payouts can be staggered and have terms attached to them. The sign-on bonus reduces the candidate’s risk because it bridges the gap between the offered compensation and their personal financial requirements. If the sign-on bonus is reasonable and the company has the finances (explained further down below), it is a win-win for both parties and hopefully the beginning a profitable business relationship. A Bit about Finances First off, I am not a business accountant nor have I managed finances for a business. I am sure that it is much more complicated than my example below and there are a lot of considerations to take into account. In my experience, however, I do know that base compensation (ie. salary) will generally fall into a different line item category on the financial books than a bonus payout. When companies determine how many open spots they have, it is usually done by department with inter-departmental salary caps. For a simplified example, an environment department’s total salary cap is $500k/year. They have 9 artists being paid $50k/year, leaving $50k/year remaining for the 10th member of the team. Remember the example I gave earlier asking for $60k/year? The company cannot offer that salary because it breaks the departmental cap. However, since bonuses typically do not affect departmental caps, the company can pull from a different pool of money without increasing their risk by committing to a higher salary. Sweetening the Deal Coming right out of the gate and asking for an upfront payment might be too aggressive of a play (ie. high risk for the company). One way around this is to attach terms to the bonus. What does this mean? Take the situation above. A candidate has an offer for $50k/year but would like a bit more. If through the course of discussing compensation they get the sense that $10k is too high, they can offer to break up the payments based on terms. For example, a counterpoint to the initial base compensation offer could look like this: - $50k/year salary - $5k bonus payout #1 after 30 days of successful employment - $5k bonus payout #2 after 365 days (or any length of time) of successful employment In this example, the candidate is guaranteed $55k/year salary for 2 years. If they factor in a standard 3% cost of living raise, the first 3 years of employment looks like this: - Year 0-1 = $55,000 ($50,000 + $5,000 payout #1) - Year 1-2 = $56,500 (($50,000 x 1.03%) + $5,000 payout #2) - Year 2-3 = $53,045 ($51,500 x 1.03%) Now it might not be the $60k/year they had in mind but it is a great compromise to keep both parties comfortable. If the Company Says Yes Great news! The company said yes! What now? Personally, I always request at least a full 24 hours to crunch the final numbers. In the past, I’ve requested up to a week for full consideration. Even if you know you will say yes, doing due diligence with your finances one last time is always a good practice. Plug the numbers into a spreadsheet, look at your bills and expenses again, and review the whole offer (base compensation, bonus, time off/sick leave, medical/dental/vision, etc.). Discuss the offer with your significant other as well. You will see the offer in a different light when you wake up, so make sure you are not rushing into a situation you will regret. If the Company Say No If the company says no, then you have a difficult decision to make. Request time to review the offer and crunch the numbers. If it is a lateral move (same position, different company) then you have to ask if the switch is worth it. Only due diligence will offer that insight and you have to give yourself enough time to let those insights arrive. You might find yourself accepting the new position due to other non-financial reasons (which could be a whole separate article!). Conclusion/Final Thoughts  When it comes to negotiating during the interview process, it is very easy to take what you can get and run. You might fear that in asking for more, you will be disqualifying yourself from the position. Keep in mind that the offer has already been extended to you and a company will not rescind their offer simply because you came back with a counterpoint. Negotiations are expected at this stage and by putting forth a creative compromise, your first impression is that of someone who conducts themselves in a professional manner. Also keep in mind that negotiations do not always go well. There are countless factors that influence whether or not someone gets a sign-on bonus. Sometimes it all comes down to being there at the right time at the right place. Just make sure you do your due diligence and be ready when the opportunity presents itself. Hope this helps!
      0 comments
    2. Recently a long-awaited event has happen - Unity Technologies uploaded the C# source code of the game engine, available for free download on Github. The code of the engine and the editor is available. Of course, we couldn't pass up, especially since lately we've not written so many articles about checking projects on C#. Unity allows to use the provided sources only for information purposes. We'll use them exactly in these ways. Let's try out the latest version PVS-Studio 6.23 on the Unity code. Introduction Previously we've written an article about checking Unity. At that time so much C#-code was not available for the analysis: some components, libraries and examples of usage. However, the author of the article managed to find quite interesting bugs. How did Unity please us this time? I'm saying "please" and hope not to offend the authors of the project. Especially since the amount of the source Unity C#-code, presented on GitHub, is about 400 thousand lines (excluding empty) in 2058 files with the extension "cs". It's a lot, and the analyzer had a quite considerable scope. Now about the results. Before the analysis, I've slightly simplified the work, having enabled the mode of the code display according to the CWE classification for the found bugs. I've also activated the warnings suppression mechanism of the third level of certainty (Low). These settings are available in the drop-down menu of PVS-Studio in Visual Studio development environment, and in the parameters of the analyzer. Getting rid of the warnings with low certainty, I made the analysis of the Unity source code. As a result, I got 181 warnings of the first level of certainty (High) and 506 warnings of the second level of certainty (Medium). I have not studied absolutely all the warnings, because there were quite a lot of them. Developers or enthusiasts can easily conduct an in-depth analysis by testing Unity themselves. To do this, PVS-Studio provides free trial and free modes of using. Companies can also buy our product and get quick and detailed support along with the license. Judging by the fact that I immediately managed to find couple of real bugs practically in every group of warnings with one or two attempts, there are a lot of them in Unity. And yes, they are diverse. Let's review the most interesting errors. Results of the check Something's wrong with the flags PVS-Studio warning: V3001 There are identical sub-expressions 'MethodAttributes.Public' to the left and to the right of the '|' operator. SyncListStructProcessor.cs 240 MethodReference GenerateSerialization() { .... MethodDefinition serializeFunc = new MethodDefinition("SerializeItem", MethodAttributes.Public | MethodAttributes.Virtual | MethodAttributes.Public | // <= MethodAttributes.HideBySig, Weaver.voidType); .... } When combining enumeration flags MethodAttributes, an error was made: the Public value was used twice. Perhaps, the reason for this is the wrong code formatting. A similar bug is also made in code of the method GenerateDeserialization: V3001 There are identical sub-expressions 'MethodAttributes.Public' to the left and to the right of the '|' operator. SyncListStructProcessor.cs 309 Copy-Paste PVS-Studio warning: V3001 There are identical sub-expressions 'format == RenderTextureFormat.ARGBFloat' to the left and to the right of the '||' operator. RenderTextureEditor.cs 87 public static bool IsHDRFormat(RenderTextureFormat format) { Return (format == RenderTextureFormat.ARGBHalf || format == RenderTextureFormat.RGB111110Float || format == RenderTextureFormat.RGFloat || format == RenderTextureFormat.ARGBFloat || format == RenderTextureFormat.ARGBFloat || format == RenderTextureFormat.RFloat || format == RenderTextureFormat.RGHalf || format == RenderTextureFormat.RHalf); } I gave a piece of code, preliminary having formatted it, so the error is easily detected visually: the comparison with RenderTextureFormat.ARGBFloat is performed twice. In the original code, it looks differently: Probably, another value of enumeration RenderTextureFormat has to be used in one of two identical comparisons. Double work PVS-Studio warning: V3008 CWE-563 The 'fail' variable is assigned values twice successively. Perhaps this is a mistake. Check lines: 1633, 1632. UNetWeaver.cs 1633 class Weaver { .... public static bool fail; .... static public bool IsValidTypeToGenerate(....) { .... if (....) { .... Weaver.fail = true; fail = true; return false; } return true; } .... } The true value is assigned twice to the value, as Weaver.fail and fail is one and the same static field of the Weaver class. Perhaps, there is no crucial error, but the code definitely needs attention. No options PVS-Studio warning: V3009 CWE-393 It's odd that this method always returns one and the same value of 'false'. ProjectBrowser.cs 1417 // Returns true if we should early out of OnGUI bool HandleCommandEventsForTreeView() { .... if (....) { .... if (....) return false; .... } return false; } The method always returns false. Pay attention to the comment in the beginning. A developer forgot about the result PVS-Studio warning: V3010 CWE-252 The return value of function 'Concat' is required to be utilized. AnimationRecording.cs 455 static public UndoPropertyModification[] Process(....) { .... discardedModifications.Concat(discardedRotationModifications); return discardedModifications.ToArray(); } When concatenating two arrays discardedModifications and discardedRotationModifications the author forgot to save the result. Probably a programmer assumed that the result would be expressed immediately in the array discardedModifications. But it is not so. As a result, the original array discardedModifications is returned from the method. The code needs to be corrected as follows: static public UndoPropertyModification[] Process(....) { .... return discardedModifications.Concat(discardedRotationModifications) .ToArray(); } Wrong variable was checked PVS-Studio warning: V3019 CWE-697 Possibly an incorrect variable is compared to null after type conversion using 'as' keyword. Check variables 'obj', 'newResolution'. GameViewSizesMenuItemProvider.cs 104 private static GameViewSize CastToGameViewSize(object obj) { GameViewSize newResolution = obj as GameViewSize; if (obj == null) { Debug.LogError("Incorrect input"); return null; } return newResolution; } In this method, the developers forgot to consider a situation where the variable objis not equal to null, but it will not be able to cast to the GameViewSize type. Then the variable newResolution will be set to null, and the debug output will not be made. A correct variant of code will be like this: private static GameViewSize CastToGameViewSize(object obj) { GameViewSize newResolution = obj as GameViewSize; if (newResolution == null) { Debug.LogError("Incorrect input"); } return newResolution; } Deficiency PVS-Studio warning: V3020 CWE-670 An unconditional 'return' within a loop. PolygonCollider2DEditor.cs 96 private void HandleDragAndDrop(Rect targetRect) { .... foreach (....) { .... if (....) { .... } return; } .... } The loop will execute only one iteration, after that the method terminates its work. Various scenarios are probable. For example, return must be inside the unit if, or somewhere before return, a directive continue is missing. It may well be that there is no error here, but then one should make the code more understandable. Unreachable code PVS-Studio warning: V3021 CWE-561 There are two 'if' statements with identical conditional expressions. The first 'if' statement contains method return. This means that the second 'if' statement is senseless CustomScriptAssembly.cs 179 public bool IsCompatibleWith(....) { .... if (buildingForEditor) return IsCompatibleWithEditor(); if (buildingForEditor) buildTarget = BuildTarget.NoTarget; // Editor .... } Two identical checks, following one after another. It is clear that in case of buildingForEditor equality to the true value, the second check is meaningless, because the first method terminates its work. If the value buildingForEditor is false, neither then-brunch nor if operator will be executed. There is an erroneous construction that requires correction. Unconditional condition PVS-Studio warning: V3022 CWE-570 Expression 'index < 0 && index >= parameters.Length' is always false. AnimatorControllerPlayable.bindings.cs 287 public AnimatorControllerParameter GetParameter(int index) { AnimatorControllerParameter[] param = parameters; if (index < 0 && index >= parameters.Length) throw new IndexOutOfRangeException( "Index must be between 0 and " + parameters.Length); return param[index]; } The condition of the index check is incorrect - the result will always be false. However, in case of passing the incorrect index to the GetParameter method, the exception IndexOutOfRangeException will still be thrown when attempting to access an array element in the return block. Although, the error message will be slightly different. One has to use || in a condition instead of the operator && so that the code worked the way a developer expected: public AnimatorControllerParameter GetParameter(int index) { AnimatorControllerParameter[] param = parameters; if (index < 0 || index >= parameters.Length) throw new IndexOutOfRangeException( "Index must be between 0 and " + parameters.Length); return param[index]; } Perhaps, due to the use of the Copy-Paste method, there is another the same error in the Unity code: PVS-Studio warning: V3022 CWE-570 Expression 'index < 0 && index >= parameters.Length' is always false. Animator.bindings.cs 711 And another similar error associated with the incorrect condition of the check of the array index: PVS-Studio warning: V3022 CWE-570 Expression 'handle.valueIndex < 0 && handle.valueIndex >= list.Length' is always false. StyleSheet.cs 81 static T CheckAccess<T>(T[] list, StyleValueType type, StyleValueHandle handle) { T value = default(T); if (handle.valueType != type) { Debug.LogErrorFormat(.... ); } else if (handle.valueIndex < 0 && handle.valueIndex >= list.Length) { Debug.LogError("Accessing invalid property"); } else { value = list[handle.valueIndex]; } return value; } And in this case, a release of the IndexOutOfRangeException exception is possible.As in the previous code fragments, one has to use the operator || instead of && to fix an error. Simply strange code Two warnings are issued for the code fragment below. PVS-Studio warning: V3022 CWE-571 Expression 'bRegisterAllDefinitions || (AudioSettings.GetSpatializerPluginName() == "GVR Audio Spatializer")' is always true. AudioExtensions.cs 463 PVS-Studio warning: V3022 CWE-571 Expression 'bRegisterAllDefinitions || (AudioSettings.GetAmbisonicDecoderPluginName() == "GVR Audio Spatializer")' is always true. AudioExtensions.cs 467 // This is where we register our built-in spatializer extensions. static private void RegisterBuiltinDefinitions() { bool bRegisterAllDefinitions = true; if (!m_BuiltinDefinitionsRegistered) { if (bRegisterAllDefinitions || (AudioSettings.GetSpatializerPluginName() == "GVR Audio Spatializer")) { } if (bRegisterAllDefinitions || (AudioSettings.GetAmbisonicDecoderPluginName() == "GVR Audio Spatializer")) { } m_BuiltinDefinitionsRegistered = true; } } It looks like an incomplete method. It is unclear why it has been left as such and why developers haven't commented the useless code blocks. All, that the method does at the moment: if (!m_BuiltinDefinitionsRegistered) { m_BuiltinDefinitionsRegistered = true; } Useless method PVS-Studio warning: V3022 CWE-570 Expression 'PerceptionRemotingPlugin.GetConnectionState() != HolographicStreamerConnectionState.Disconnected' is always false. HolographicEmulationWindow.cs 171 private void Disconnect() { if (PerceptionRemotingPlugin.GetConnectionState() != HolographicStreamerConnectionState.Disconnected) PerceptionRemotingPlugin.Disconnect(); } To clarify the situation, it is necessary to look at the declaration of the methodPerceptionRemotingPlugin.GetConnectionState(): internal static HolographicStreamerConnectionState GetConnectionState() { return HolographicStreamerConnectionState.Disconnected; } Thus, calling the Disconnect() method leads to nothing. One more error relates to the same method PerceptionRemotingPlugin.GetConnectionState(): PVS-Studio warning: V3022 CWE-570 Expression 'PerceptionRemotingPlugin.GetConnectionState() == HolographicStreamerConnectionState.Connected' is always false. HolographicEmulationWindow.cs 177 private bool IsConnectedToRemoteDevice() { return PerceptionRemotingPlugin.GetConnectionState() == HolographicStreamerConnectionState.Connected; } The result of the method is equivalent to the following: private bool IsConnectedToRemoteDevice() { return false; } As we can see, among the warnings V3022 many interesting ones were found. Probably, if one spends much time, he can increase the list. But let's move on. Not on the format PVS-Studio warning: V3025 CWE-685 Incorrect format. A different number of format items is expected while calling 'Format' function. Arguments not used: index. Physics2D.bindings.cs 2823 public void SetPath(....) { if (index < 0) throw new ArgumentOutOfRangeException( String.Format("Negative path index is invalid.", index)); .... } There is no error in code, but as the saying goes, the code "smells". Probably, an earlier message was more informative, like this: "Negative path index {0} is invalid.". Then it was simplified, but developers forgot to remove the parameter index for the method Format. Of course, this is not the same as a forgotten parameter for the indicated output string specifier, i.e. the construction of the type String.Format("Negative path index {0} is invalid."). In such a case, an exception would be thrown. But in our case we also need neatness when refactoring. The code has to be fixed as follows: public void SetPath(....) { if (index < 0) throw new ArgumentOutOfRangeException( "Negative path index is invalid."); .... } Substring of the substring PVS-Studio warning: V3053 An excessive expression. Examine the substrings 'UnityEngine.' and 'UnityEngine.SetupCoroutine'. StackTrace.cs 43 static bool IsSystemStacktraceType(object name) { string casted = (string)name; return casted.StartsWith("UnityEditor.") || casted.StartsWith("UnityEngine.") || casted.StartsWith("System.") || casted.StartsWith("UnityScript.Lang.") || casted.StartsWith("Boo.Lang.") || casted.StartsWith("UnityEngine.SetupCoroutine"); } Search of the substring "UnityEngine.SetupCoroutine" in the condition is meaningless, because before that the search for "UnityEngine." is performed. Therefore, the last check should be removed or one has to clarify the correctness of substrings. Another similar error: PVS-Studio warning: V3053 An excessive expression. Examine the substrings 'Windows.dll' and 'Windows.'. AssemblyHelper.cs 84 static private bool CouldBelongToDotNetOrWindowsRuntime(string assemblyPath) { return assemblyPath.IndexOf("mscorlib.dll") != -1 || assemblyPath.IndexOf("System.") != -1 || assemblyPath.IndexOf("Windows.dll") != -1 || // <= assemblyPath.IndexOf("Microsoft.") != -1 || assemblyPath.IndexOf("Windows.") != -1 || // <= assemblyPath.IndexOf("WinRTLegacy.dll") != -1 || assemblyPath.IndexOf("platform.dll") != -1; } Size does matter PVS-Studio warning: V3063 CWE-571 A part of conditional expression is always true if it is evaluated: pageSize <= 1000. UNETInterface.cs 584 public override bool IsValid() { .... return base.IsValid() && (pageSize >= 1 || pageSize <= 1000) && totalFilters <= 10; } Condition for a check of a valid page size is erroneous. Instead of the operator ||, one has to use &&. The corrected code: public override bool IsValid() { .... return base.IsValid() && (pageSize >= 1 && pageSize <= 1000) && totalFilters <= 10; } Possible division by zero PVS-Studio warning: V3064 CWE-369 Potential division by zero. Consider inspecting denominator '(float)(width - 1)'. ClothInspector.cs 249 Texture2D GenerateColorTexture(int width) { .... for (int i = 0; i < width; i++) colors[i] = GetGradientColor(i / (float)(width - 1)); .... } The problem may occur when passing the value width = 1 into the method. In the method, it is not checked anyway. The method GenerateColorTexture is called in the code just once with the parameter 100: void OnEnable() { if (s_ColorTexture == null) s_ColorTexture = GenerateColorTexture(100); .... } So, there is no error here so far. But, just in case, in the method GenerateColorTexture the possibility of transferring incorrect width value should be provided. Paradoxical check PVS-Studio warning: V3080 CWE-476 Possible null dereference. Consider inspecting 'm_Parent'. EditorWindow.cs 449 public void ShowPopup() { if (m_Parent == null) { .... Rect r = m_Parent.borderSize.Add(....); .... } } Probably, due to a typo, the execution of such code guarantees the use of the null reference m_Parent. The corrected code: public void ShowPopup() { if (m_Parent != null) { .... Rect r = m_Parent.borderSize.Add(....); .... } } The same error occurs later in the code: PVS-Studio warning: V3080 CWE-476 Possible null dereference. Consider inspecting 'm_Parent'. EditorWindow.cs 470 internal void ShowWithMode(ShowMode mode) { if (m_Parent == null) { .... Rect r = m_Parent.borderSize.Add(....); .... } And here's another interesting bug that can lead to access by a null reference due to incorrect check: PVS-Studio warning: V3080 CWE-476 Possible null dereference. Consider inspecting 'objects'. TypeSelectionList.cs 48 public TypeSelection(string typeName, Object[] objects) { System.Diagnostics.Debug.Assert(objects != null || objects.Length >= 1); .... } It seems to me that Unity developers quite often make errors related to misuse of operators || and && in conditions. In this case, if objects has a null value, then this will lead to a check of second part of the condition (objects != null || objects.Length >= 1), which will entail the unexpected throw of an exception. The error should be corrected as follows: public TypeSelection(string typeName, Object[] objects) { System.Diagnostics.Debug.Assert(objects != null && objects.Length >= 1); .... } Early nullifying PVS-Studio warning: V3080 CWE-476 Possible null dereference. Consider inspecting 'm_RowRects'. TreeViewControlGUI.cs 272 public override void GetFirstAndLastRowVisible(....) { .... if (rowCount != m_RowRects.Count) { m_RowRects = null; throw new InvalidOperationException(string.Format("....", rowCount, m_RowRects.Count)); } .... } In this case, the exception throw (access by the null reference m_RowRects) will happen when generating the message string for another exception. Code might be fixed, for example, as follows: public override void GetFirstAndLastRowVisible(....) { .... if (rowCount != m_RowRects.Count) { var m_RowRectsCount = m_RowRects.Count; m_RowRects = null; throw new InvalidOperationException(string.Format("....", rowCount, m_RowRectsCount)); } .... } One more error when checking PVS-Studio warning: V3080 CWE-476 Possible null dereference. Consider inspecting 'additionalOptions'. MonoCrossCompile.cs 279 static void CrossCompileAOT(....) { .... if (additionalOptions != null & additionalOptions.Trim().Length > 0) arguments += additionalOptions.Trim() + ","; .... } Due to the fact that the & operator is used in a condition, the second part of the condition will always be checked, regardless of the result of the check of the first part. In case if the variable additionalOptions has the null value, the exception throw is inevitable. The error has to be corrected, by using the operator && instead of &. As we can see, among the warnings with the number V3080 there are rather insidious errors. Late check PVS-Studio warning: V3095 CWE-476 The 'element' object was used before it was verified against null. Check lines: 101, 107. StyleContext.cs 101 public override void OnBeginElementTest(VisualElement element, ....) { if (element.IsDirty(ChangeType.Styles)) { .... } if (element != null && element.styleSheets != null) { .... } .... } The variable element is used without preliminary check for null. While later in the code this check is performed. The code probably needs to be corrected as follows: public override void OnBeginElementTest(VisualElement element, ....) { if (element != null) { if (element.IsDirty(ChangeType.Styles)) { .... } if (element.styleSheets != null) { .... } } .... } In code there are 18 more errors. Let me give you a list of the first 10: V3095 CWE-476 The 'property' object was used before it was verified against null. Check lines: 5137, 5154. EditorGUI.cs 5137 V3095 CWE-476 The 'exposedPropertyTable' object was used before it was verified against null. Check lines: 152, 154. ExposedReferenceDrawer.cs 152 V3095 CWE-476 The 'rectObjs' object was used before it was verified against null. Check lines: 97, 99. RectSelection.cs 97 V3095 CWE-476 The 'm_EditorCache' object was used before it was verified against null. Check lines: 134, 140. EditorCache.cs 134 V3095 CWE-476 The 'setup' object was used before it was verified against null. Check lines: 43, 47. TreeViewExpandAnimator.cs 43 V3095 CWE-476 The 'response.job' object was used before it was verified against null. Check lines: 88, 99. AssetStoreClient.cs 88 V3095 CWE-476 The 'compilationTask' object was used before it was verified against null. Check lines: 1010, 1011. EditorCompilation.cs 1010 V3095 CWE-476 The 'm_GenericPresetLibraryInspector' object was used before it was verified against null. Check lines: 35, 36. CurvePresetLibraryInspector.cs 35 V3095 CWE-476 The 'Event.current' object was used before it was verified against null. Check lines: 574, 620. AvatarMaskInspector.cs 574 V3095 CWE-476 The 'm_GenericPresetLibraryInspector' object was used before it was verified against null. Check lines: 31, 32. ColorPresetLibraryInspector.cs 31 Wrong Equals method PVS-Studio warning: V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. CurveEditorSelection.cs 74 public override bool Equals(object _other) { CurveSelection other = (CurveSelection)_other; return other.curveID == curveID && other.key == key && other.type == type; } Overload of the Equals method was implemented carelessly. One has to take into account the possibility of obtaining null as a parameter, as this can lead to a throw of an exception, which hasn't been considered in the calling code. In addition, the situation, when _other can't be cast to the type CurveSelection, will lead to a throw of an exception. The code has to be fixed. A good example of the implementation of Object.equals overload is given in the documentation. In the code, there are other similar errors: V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. SpritePackerWindow.cs 40 V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. PlatformIconField.cs 28 V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. ShapeEditor.cs 161 V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. ActiveEditorTrackerBindings.gen.cs 33 V3115 CWE-684 Passing 'null' to 'Equals' method should not result in 'NullReferenceException'. ProfilerFrameDataView.bindings.cs 60 Once again about the check for null inequality PVS-Studio warning: V3125 CWE-476 The 'camera' object was used after it was verified against null. Check lines: 184, 180. ARBackgroundRenderer.cs 184 protected void DisableARBackgroundRendering() { .... if (camera != null) camera.clearFlags = m_CameraClearFlags; // Command buffer camera.RemoveCommandBuffer(CameraEvent.BeforeForwardOpaque, m_CommandBuffer); camera.RemoveCommandBuffer(CameraEvent.BeforeGBuffer, m_CommandBuffer); } When the camera variable is used the first time, it is checked for null inequality. But further along the code the developers forget to do it. The correct variant could be like this: protected void DisableARBackgroundRendering() { .... if (camera != null) { camera.clearFlags = m_CameraClearFlags; // Command buffer camera.RemoveCommandBuffer(CameraEvent.BeforeForwardOpaque, m_CommandBuffer); camera.RemoveCommandBuffer(CameraEvent.BeforeGBuffer, m_CommandBuffer); } } Another similar error: PVS-Studio warning: V3125 CWE-476 The 'item' object was used after it was verified against null. Check lines: 88, 85. TreeViewForAudioMixerGroups.cs 88 protected override Texture GetIconForItem(TreeViewItem item) { if (item != null && item.icon != null) return item.icon; if (item.id == kNoneItemID) // <= return k_AudioListenerIcon; return k_AudioGroupIcon; } An error, that in some cases leads to an access by a null link. The execution of the condition in the first block if enables the exit from the method. However, if this does not happen, then there is no guarantee that the reference item is non-zero. Here is the corrected version of the code: protected override Texture GetIconForItem(TreeViewItem item) { if (item != null) { if (item.icon != null) return item.icon; if (item.id == kNoneItemID) return k_AudioListenerIcon; } return k_AudioGroupIcon; } In the code there are 12 similar errors. Let me give you a list of the first 10: V3125 CWE-476 The 'element' object was used after it was verified against null. Check lines: 132, 107. StyleContext.cs 132 V3125 CWE-476 The 'mi.DeclaringType' object was used after it was verified against null. Check lines: 68, 49. AttributeHelper.cs 68 V3125 CWE-476 The 'label' object was used after it was verified against null. Check lines: 5016, 4999. EditorGUI.cs 5016 V3125 CWE-476 The 'Event.current' object was used after it was verified against null. Check lines: 277, 268. HostView.cs 277 V3125 CWE-476 The 'bpst' object was used after it was verified against null. Check lines: 96, 92. BuildPlayerSceneTreeView.cs 96 V3125 CWE-476 The 'state' object was used after it was verified against null. Check lines: 417, 404. EditorGUIExt.cs 417 V3125 CWE-476 The 'dock' object was used after it was verified against null. Check lines: 370, 365. WindowLayout.cs 370 V3125 CWE-476 The 'info' object was used after it was verified against null. Check lines: 234, 226. AssetStoreAssetInspector.cs 234 V3125 CWE-476 The 'platformProvider' object was used after it was verified against null. Check lines: 262, 222. CodeStrippingUtils.cs 262 V3125 CWE-476 The 'm_ControlPoints' object was used after it was verified against null. Check lines: 373, 361. EdgeControl.cs 373 The choice turned out to be small PVS-Studio warning: V3136 CWE-691 Constant expression in switch statement. HolographicEmulationWindow.cs 261 void ConnectionStateGUI() { .... HolographicStreamerConnectionState connectionState = PerceptionRemotingPlugin.GetConnectionState(); switch (connectionState) { .... } .... } The method PerceptionRemotingPlugin.GetConnectionState() is to blame here. We have already come across it when we were analyzing the warnings V3022: internal static HolographicStreamerConnectionState GetConnectionState() { return HolographicStreamerConnectionState.Disconnected; } The method will return a constant. This code is very strange. It needs to be paid attention. Conclusions I think we can stop at this point, otherwise the article will become boring and overextended. Again, I listed the errors that I just couldn't miss. Sure, the Unity code contains a big number of the erroneous and incorrect constructions, that need to be fixed. The difficulty is that many of the issued warnings are very controversial and only the author of the code is able to make the exact "diagnosis" in each case. Generally speaking about the Unity project, we can say that it is rich for errors, but taking into account the size of its code base (400 thousand lines), it's not so bad. Nevertheless, I hope that the authors will not neglect the code analysis tools to improve the quality of their product. Use PVS-Studio and I wish you bugless code!  
      0 comments
    3. Intention This article is intended to give a brief look into the logistics of machine learning. Do not expect to become an expert on the field just by reading this. However, I hope that the article goes into just enough detail so that it sparks your interest in learning more about AI and how it can be applied to various fields such as games. Once you finish reading the article, I recommend looking at the resources posted below. If you have any questions, feel free to message me on Twitter @adityaXharsh. How Neural Networks Work Neural networks work by using a system of receiving inputs, sending outputs, and performing self-corrections based on the difference between the output and expected output, also known as the cost. Neural networks are composed of neurons, which in turn compose layers, or collections of neurons. For example, there is an input layer and an output layer. In between the these two layers, there are layers known as hidden layers. These layers allow for more complex and nuanced behavior by the neural network. A neural network can be thought of as a multi-tier cake: the first tier of the cake represents the input, the tiers in between, or lack thereof, represent the hidden layers, and the last tier represents the output. The two mechanisms of learning are Forward Propagation and Backward Propagation. Forward Propagation uses linear algebra for calculating what the activation of each neuron of the next layer should be, and then pushing, or propagating, those values forward. Backward Propagation uses calculus to determine what values in the network need to be changed in order to bring the output closer to the expected output. Forward Propagation As can be seen from the gif above, each layer is composed of multiple neurons, and each neuron is connected to every other neuron of the following and previous layer, save for the input and output layers since they are not surrounding by layers from both sides. To put it simply, a neural network represents a collection of activations, weights, and biases. They can be defined as: Activation: A value representing how strongly a neuron is firing. Weight: How strong the connection is between two neurons. Affects how much of the activation is propagated onto the next layer. Bias: A minimum threshold for whether or not the current neuron's activation and weight should affect the next neuron's activation. Each neuron has an activation and a bias. Every connection to every neuron is represented as a weight. The activations, weights, biases, and connections can be represented using matrices. Activations are calculated using this formula: After the inner portion of the function has been computed, the resulting matrix gets pumped into a special function known as the Sigmoid Function. The sigmoid is defined as: The sigmoid function is handy since its output is locked between a range of zero and one. This process is repeated until the activations of the output neurons have been calculated. Backward Propagation The process of a neural network performing self-correction is referred to as Backward Propagation or backprop. This article will not go into detail about backprop since it can be a confusing topic. To summarize, the algorithm uses a technique in calculus known as Gradient Descent. Given a plane in an infinite number of dimensions, the direction of change that minimizes the error must be found. The goal of using gradient descent is to modify the weights and biases such that the error in the network approaches zero. Furthermore, you can find the cost, or error, of a network using this formula: Unlike forward propagation, which is done from input to output, backward propagation goes from output to input. For every activation, find the error in that neuron, how much of a role it played in the error of the output, and adjust accordingly. This technique uses concepts such as the chain rule, partial derivatives, and multi-variate calculus; therefore, it's a good idea to brush up on one's calculus skills. High Level Algorithm Initialize matrices for weights and biases for all layers to a random decimal number between -1 and 1. Propagate input through the network. Compare output with the expected output. Backwards propagate the correction back into the network. Repeat this for N number of training samples. Source Code If you're interested in looking into the guts of a neural network, check out AI Chan! It's a simple to integrate library for machine learning I wrote in C++. Feel free to learn from it and use it in your own projects. https://bitbucket.org/mrsaturnsan/aichan/ Resources http://neuralnetworksanddeeplearning.com/ https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A    
      0 comments
    4. The following is an excerpt from the book, Unity 2017 Game Development Essentials - Third Edition written by Tommaso Lintrami and published by Packt Publishing. Unity makes the game production process simple by giving you a set of logical steps to build any conceivable game scenario. Renowned for being non-game-type specific, Unity offers you a blank canvas and a set of consistent procedures to let your imagination be the limit of your creativity. Essential Unity concepts By establishing the use of the Game Object concept, you are able to break down parts of your game into easily manageable objects, which are made of many individual component parts. By making individual objects within the game, introducing functionality to them with each component you add, you are able to infinitely expand your game in a logical, progressive manner. Component parts in turn have Variables, which are essentially properties of the component, or settings to control them with. By adjusting these variables, you'll have complete control over the effect that a component has on your object. The following diagram illustrates this: Assets These are the building blocks of all Unity projects. From textures in the form of image files, through 3D models for meshes, and sound files for effects, Unity refers to the files you'll use to create your game as assets. This is why, in any Unity project folder, all files used are stored in a child folder named Assets. This Assets folder is mirrored in the Project panel of the Unity interface; see the interface section in this chapter for more detail. Scenes In Unity, you should think of scenes as individual levels or areas of game content. However, some developers create entire games in a single scene, such as puzzle games, by dynamically loading content through the code. By constructing your game with many scenes, you'll be able to distribute loading times and test different parts of your game individually. New scenes are often used separately to a game scene you may be working on in order to prototype or test a piece of potential gameplay.

      Any currently open scene is what you are working on. In Unity 2017, you can load more scenes into the hierarchy while editing, and even at runtime, through the new SceneManager API, where two or more scenes can be worked on simultaneously. Scenes can be manipulated and constructed by using the Hierarchy and Scene views. OK, now that we know what assets and scenes let’s start setting up a scene and building a game asset. Setting up a scene and preparing game assets Create a new scene from the main menu by navigating to Assets | Create | Scene, and name it ParallaxGame. In this new scene, we will set up, step by step, all the elements for our 2D game prototype. First of all, we will switch the camera setting in the Scene view to 2D by clicking on the button as shown by the red arrow in the following screenshot: As you can see, now the Scene view camera is orthographic. You can't rotate it as you wish, as you can do with the 3D camera. Of course, we will want to change this setting on our Main Camera as well. Also, we want to change the Orthographic size to 4.5 to have the correct view of the scene. Instead, for the Skybox, we will choose a very dark or black color as clear color in the depth setting. This is how the Inspector should look when these settings are done:   While the Clipping Planes distances are important for setting the size of the frustum cone of a 3D, for the Perspective camera (inside which everything will be rendered by the engine), we should only set the Orthographic Size to 4.5, to have the correct distance of the 2D camera from the scene. When these settings are done, proceed by importing Chapter2-3-4.unitypackage into the project. You can either double-click on the package file with Unity open, or use the top menu: Assets | Import | Custom Package. If you haven't imported all the materials from the book's code already, be sure to include the Sprites subfolder. After the import, look in the Sprites/Parallax/DarkCave folder in the Project view and you will find some images imported as textures (as per default). The first thing we want to do now is to change the import settings of these images, in the Inspector, from Texture to Sprite (2D and UI). To do so, select all the images in the Project view in the Sprites/Parallax/DarkCave folder, all except the _reference_main_post file. Which is just a picture used as a reference of what the game level should look like: The Import Settings shown in the Inspector after selecting the seven images in the Project view The Max Size setting is hidden (-) because we have a multi-selection of image files. After having made the multiple selections, again, in the Inspector, we will do the following: Set the Texture Type option to Sprites (2D and UI). By default, images are imported as textures; to import them as Sprites, this type must be set. Uncheck the Generate Mip Maps option as we don't need MIP maps for this project as we are not going to look at the Sprites from a distant point of view, for example, games with the zoom-in/zoom-out feature (like the original Grand Theft Auto 2D game) would need this setting checked. Set Max Size to the maximum allowed. To ensure that you import all the images at their maximum resolution, set this to 8192. This is the maximum resolution size for an image on a modern PC, imported as a Sprite or texture. We set it so high because most of the background images we have in the collection are around 6,000 pixels wide. Click on the Apply button to apply these changes to all the images that were selected: The Project view showing the content of the folder after the images have been set to Sprite in the Import Settings. Placing the prefabs in the game Unity can place the prefabs in the game in many ways, the usual, visual method is to drag a stored prefab or another kind of file/object directly into the scene. Before dragging in the Sprites we imported, we will create an empty GameObject and rename it ParallaxCave. We will drag the layer images we just imported as Sprites, one by one, from the Project view (pointing at the Assets/Chapters2-3-4/Sprites/Background/DarkCave folder) into the Scene view, or more simply, directly in the Hierarchy view as the children of our ParallaxCaveGameObject, resulting in a scene Hierarchy like the one illustrated here: You can't drag all of them instantly because Unity will prompt you to save an animation filename for the selected collection of Sprites; we will see this later for our character and for the collectable graphics. Importing and placing background layers In any game engine, 2D elements, such as Sprites, are rendered following a sort order; this order is also called the z-order because it is a way to express the depth or to cope with the missing z axis in a two-dimensional context. The sort order is assigned an integer number which can be positive or negative; 0 is the middle point of this draw order. Ideally, a sort order of zero expresses the middle ground, where the player will act, or near its layer. Look at this image: Image courtesy of Wikipedia: parallax scrolling   All positive numbers will render the Sprite element in front of the other elements with a lower number. The graphic set we are going to use was taken from the Open Game Art website at http://opengameart.org. For simplicity, the provided background image files are named with a number within parentheses, for example, middleground(z1), which means that this image should be rendered with a z sort order of 1. Change the sort order property of the Sprite component on each child object under ParallaxCave according to the value in the parentheses at the end of their filenames. This will rearrange the graphics into the appropriately sorted order. After we place and set the correct layer order for all the images, we should arrange and scale the layers in a proper manner to end as something like the reference image furnished in the Assets/Chapters2-3-4/Sprites/Background/DarkCave/ folder. You can take a look at the final result for this part anytime, by saving the current scene and loading the Chapter3_start.unity scene. You just read an excerpt from the book, Unity 2017 Game Development Essentials - Third Edition written by Tommaso Lintrami and published by Packt Publishing. Use the code ORGDA10 at checkout to get recommended eBook retail price for $10 only until April 30, 2018.  
      0 comments
    5. This reference guide has now been proofread by @stimarco (Sean Timarco Baggaley). Please give your thanks to him. The guide should now be far easier to read and understand than previous revisions, enjoy! Note: The normal mapping tutorial has been temporarily moved, to be added back as its own topic, to help separate the two for more clarity.   If anyone has any corrections, please contact me. 3D Graphics Primer 1: Textures. This is a quick reference for artists who are starting out. The first topic revolves around textures and the many things an artist who is starting out needs to understand. I am primarily a 3d artist and my focus will therefore be primarily on 3d art. However, some of this information is applicable to 2d artists. Textures What is a texture?

      By classical definition a texture is the visual and esp. tactile quality of a surface (Dictionary.com).

      Since current games lack the ability to convey tactile sensations, a texture in game terms simply refers to the visual quality of a surface, with an implicit tactile quality. That is, a rock texture should give the impression of the surface of a rock, and depending on the type, a rough or smooth tactile quality. We see these types of surfaces in real life and feel them in real life. So when we see the texture, we know what it feels like without needing to touch it due to our past experiences. But a lot more goes into making a convincing texture beyond the simple tactile quality.

      As you will learn as you read on, textures in games is a very complex topic, with many elements involved in creating them for realtime rendering.

      We will look at: Texture File Types & Formats Texture Image Size Texture File Size Texture Types Tiling Textures Texture Bit Depth Making Normal Maps (Brief overview only) Pixel Density and Fill Rate Limitation Mipmaps Further Reading     Further Reading Creating and using textures is such a big subject that covering it entirely within this one primer is simply not sensible. All I can sensibly achieve here is a skimming over the surface, so here are some links to further reading matter.

      Beautiful Yet Friendly - Written by Guillaume Provost, hosted by Adam Bromell. This is a very interesting article that goes into some depth about basic optimizations and the thought process when designing and modeling a level. It goes into the technical side of things to truly give you an understanding on what is going on in the background. You can use the information in this article to find out how to build models that use fewer resources -- polygons, textures, etc. -- for the same results.
      This is the reason why this is the first article I am linking to: it is imperative to understand the topics discussed in this article. If you need any extra explanation after reading it, you can PM me and I am more than happy to help. However, parts of this article go outside the texture realm of things and into the mesh side, so keep that in mind if you're focusing on learning textures at the moment.

      UVW Mapping Tutorial - by Waylon Brinck. This is about the best tutorial I have found for a topic that gives all 3D artists a headache: unwrapping your three-dimensional object into a two-dimensional plane for 2D painting. It is the process by which all 3D artists place a texture on a mesh (model). NOTE: while this tutorial is very good and will help you in learning the process, UVW mapping/unwrapping is just one of those things you must practice and experiment with for a while before you truly understand it.

      Poop In My Mouth's Tutorials - By Ben Mathis. Probably the only professional I know who has such a scary website name, but don't be afraid! I swear there is nothing terrible beyond that link. He has a ton of excellent tutorials, short and long, that cover both the modeling and texturing processes, ranging from normal-mapping to UVW unwrapping. You may want to read this reference first before delving into some of his tutorials. Texture File Types & Formats In the computer world, textures are really nothing more than image files applied to a model. Because of this, a variety of common computer image formats can be used. These include, .TGA, .DDS, .BMP, and even .JPG (or .JPEG). Almost any digital image format can be used, but some things must be taken into consideration:

      In the modern world of gaming, being heavily reliant on shaders, formats like the .JPG format are rarely used. This is because .JPG, and others like it, are lossy formats, where data in the image file is actually thrown away to make the file smaller. This process can result in compression artifacts The problem is that these artifacts will interfere with shaders, because these rely on having all the data contained within the image intact. Because of this, lossless formats are used -- formats like .DDS (if lossless option chosen), .BMP, and .TGA.

      However, there is such a thing called S3TC (also known as "dxt") compression. This was a compression technique developed for use on Savage 3D graphics cards, with the benefit of keeping a texture compressed within video memory whereas non-S3TC-compressed textures are not. This results in a 1:8 or greater compression ratio and can allow either more textures to be used in a scene, or can be used to increase the resolution of a texture without using more memory. S3TC compression can be made to work with any format, but is most commonly associated with the .DDS format.

      Just like the .jpg and other lossy formats, any texture using S3TC will suffer compression artifacts, and as such is not suitable for normal maps, (which we'll discuss a little later on).

      Even with S3TC it is common to use a lossless format for the texture format, and then apply S3TC when necessary. This is done to provide an artist with the ability to have lossless textures when needed -- e.g. for normal maps -- but then provide them with a method for compression on textures that could benefit from S3TC compression, such as diffuse textures. Texture Image Size The engineers who design computers and their component parts like us to feed data to their hardware in chunks that have dimensions defined as powers of two. (E.g. 16 pixels, 32 pixels, 64 pixels, and so on.) While it is possible to have a texture that is not the power of two, it is generally a good idea to stick to power-of-two sizes for compatibility reasons (especially if you're targeting older hardware). That is, if you're creating a texture for a game, you want to use image dimensions that are the power of two. Examples, 32x32, 16x32, 2048x1024, 1024x1024, 512x512, 512x32, etc. Say for example, you have a mesh/model and you're UV Unwrapping, for a game you must work within dimensions that are a power of two.

      Powers of two include: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and so on.

      What if you want to use images that aren't powers of two? In such cases, you can often use uneven pixel ratios. This means you can create your texture at, say, 1024x768, and then you can save it as 1024x1024. When you're applying your texture to your mesh you can stretch it back out in proportion. However, it is best to go for a 1:1 pixel ratio and create the texture starting at the power of 2, but the stretching is one method for getting around this if needed

      Please refer to the "Pixel Density and Fill Rate Limitation" section for more in depth info on how exactly to choose your image size. Texture File Size File size is important for a number of reasons. The file is the actual amount of memory (permanent or temporary) that the texture requires.
      For an obvious example, an uncompressed .BMP could be 6MB, this is the space it requires to be saved on a hard drive and within the video and/or system RAM. Using compression we can squeeze the same image into a file size of, say, 400 KB, or possibly even smaller. Compression, like that used by .JPG and other similar formats, will only do compression on permanent storage media, such as hard drives. That is to say, when the image is stored in video card memory it must be uncompressed within the memory, so you truly only get a benefit on storing the texture on its permanent medium but not in memory during use. Enter S3TC The key benefit of the S3TC compression system is that it compresses on hard drives, discs, and other media, while also staying compressed within video card memory.

      But why should you care what size it is within the video memory?

      Video cards have onboard memory called, unsuprisingly enough, video memory, for storing data that needs to be accessed fast. This memory is limited, so considerations on the artists' part must be used. The good news is that video card manufacturers are constantly adding more of this video memory -- known as Video RAM (or VRAM for short). Where once 64 MB was considered good, we can now find video cards with up to 1 GB of RAM.

      The more textures you have, the more RAM will be used. The actual amount is based primarily on the file size of each texture. Other data take up video memory, such as the model data itself, but the majority is used for textures. For this reason, it is a good idea to both plan your video memory usage and test how much you're using once in the engine. It is also advised that you have a minimum hardware configuration for what you want your game to run on. If this is the case, then you should always make sure your video memory usage does not go over the minimum target hardware's amount.

      Another advantage of in-memory compression like S3TC is that it can increase available bandwidth. If you know your engine on your target hardware may be swapping textures back and forth frequently (something that should be avoided if possible, but is a technique used on consoles), then you may want to consider having the textures compressed and then decompress them on the fly. That is to say, you have the textures compressed, and then when they're required, they're transported and then decompressed as they're added to video memory. This results in less data having to be shunted across the graphics card's bus (transport line) to and from the computer's main memory, resulting in less bandwidth utilization, but with the added penalty of a few wasted processing clocks. Texture Types Now we're going to discuss such things are diffuse, normal, specular, parallax and cube mapping.
      Aside from the diffuse map, these mapping types are common in what have become known as 'next-gen' engines, where the artist is given more control over how the model is rendered by use of control maps for shaders. Diffuse maps are textures which simply provide the color and any baked-in details. Games before shaders simply used diffuse textures. (You could say this is the 'default' texture type.) For example, when texturing a rock, the diffuse map of the rock would be just the color and data of that rock. Diffuse textures can be painted by hand or made from photographs, or a mixture of both.

      However, in any modern engine, most lighting and shadow detail is preferred to not be 'baked' (i.e. pre-drawn directly into the texture) into the diffuse map, but instead to have just the color data in the diffuse and use other control maps to recreate such things as shadows, specular reflections, refraction effects and so on. This results in a more dynamic look for the texture overall, helping its believability once in-game. 'Baking' such details will hinder the game engine's ability to produce "dynamic" results, which will cause the end result to look unrealistic.

      There is sometimes an exception to this rule: if you're providing "general" shading/lighting like ambient occlusion maps baked (merged) into the diffuse, then it is ok. These types of additions into the diffuse are general enough that they won't hinder the dynamic effect of running in a realtime engine, while achieving a higher level of realism.

      Another point to remember is that while textures sourced from photographs tend to work very well in 3D environment work, it is often frowned upon to use such 'photosourced textures' for humans. Human diffuse textures are usually hand-painted.

      Normal maps are used to provide lighting detail for dynamic lighting, however this is involved in an even more important role, as we will discuss shortly. Normal maps get their name from the fact that they recreate normals on a mesh using a texture. A 'normal' is a point (actually a vector) extending from a triangle on a mesh. This tells the game engine how much light the triangle should receive from a particular light source -- the engine simply compares the angle of the normal with the position and angle of the light itself and thus calculates how the light strikes the triangle. Without a normal map, the game engine can only use the data available in the mesh itself; a triangle would only have three normals for the engine to use -- one at each point -- regardless of how big that triangle is on the screen, resulting in a flat look. A normal map, on the other hand, creates normals right across a mesh's surface. The result is the capability to generate a normal map from a 2 million poly mesh and have this lighting detail recreated on a 200 poly mesh. This can allow an artist to recreate a high-poly mesh with relatively low polygons in comparison.

      Such tricks are associated with 'next-gen' engines, and are heavily used in screenshots of the Unreal 3 Engine, where you can see large amounts of detail yet able to run in realtime due to the actual amount of polys used. Normal maps use the different color channels (red, green, and blue) for storing gray scale data of lighting information at different angles, however there is no set standard for how these channels can be interpreted and as such sometimes require a channel to be flipped for correct function in an engine.

      Normal maps can be generated from high-poly meshes, or they can be image generated, that is, being generated from a gray scale map. However, high-poly generated normal maps tend to be preferred as they tend to have more depth. This is for various reasons, but the main one is that it is difficult for most to paint a grayscale map that is equal to the quality you'll receive straight from a model. Also, you will often find that the image generators tend to miss details, requiring the artist to edit the normal map by hand later. However, it is not impossible to receive near equal results using both methods, each have their own requirements, it is up to you on which to use in each situation

      (Please refer to the tutorial section for extended information on normal maps.)

      Specular maps are simple in creation. They are easy to paint by hand, because the map is simply a gray scale map that defines the specular level for any point on a mesh. However, in some engines and in 3D modeling applications this map can be full-color so the brightness defines the specular level and color defines the color of the specular highlights. This gives the artist finer control to produce more lifelike textures because the specific specular attribute of certain materials can be more defined and closer to reality. In this way you can give a plastic material a more plastic-like specular reflection, or simulate a stone's particular specular look.

      Parallax mapping picks up where regular normal mapping fails. We create normals on a model by use of a normal map. A parallax map does the same thing as a normal map except it samples a grayscale map within the alpha channel. Parallax mapping works by using the angles recorded in the tangent space normal maps along with the heightmap to calculate which way to displace the texture coordinates. It uses the grayscale map to define how much the texture should be extruded outwards, and uses the angle information recorded in the tangent normal map to determine the angle to offset the texture. Doing things this way a parallax map can then recreate the extrusion of a normal map, but without the flattening that visible in ordinary normal mapping due to lack of data at different perspectives. It mainly gets its name from how the effect is created by the parallax effect. The end results are cleaner and deeper extrusions with less flattening that occurs in normal mapping because the texture coordinates are offset with your perspective.

      Parallax mapping is usually more costly than normal mapping. Parallax also has the limitation of not being used on deformable meshes because of the tendency for the texture to "swim" due to the way textures are offset.

      Cube mapping uses a texture that is not unlike an unfolded box and acts just like a sky box when used. Basically this texture is designed like an unfolded box where it all is folded back together when being used. This allows us to create a 3d dimensional reflection of sorts. The result is very realistic precomputed reflections. For example, you would use this technique to create a shiny, metal ball. The cube map would provide the reflection data. (In some engines, you can tell the engine itself to generate a cube map from a specific point in the scene and have it apply the result to a model. This is how we get shiny, reflective cars in racing games, for example. The engine is constantly taking cube map 'photos' for each car to ensure it reflects its surroundings accurately.) Tiling Textures Now, while you can have unique, specific textures made for specific models, a common thing to do to both save time and video memory, is tiling textures. These are textures which can be fitted together like floor or wall tiles, producing a single, seamless texture/image. The benefit is that you can texture an entire floor in an entire building using a single tiling texture, which both saves the artist's time, and video memory due to fewer textures being needed.

      A tiling texture is achieved by having the left and right side of a texture blend into each other, and the same for the bottom and top of the texture. Such blending can be achieved by the use of a specialist program, a plugin, or by simply offsetting the texture a little to the left and down, cleaning up the seams, and then offsetting back to the original position

      After you create your first tiling texture and test it, you're bound to see that each texture will produce a 'tiling artifact' which shows how and where the texture is tiled. Such artifacts can be reduced by avoiding high-contrast detail, unique detail (such as a single rock on a sand texture), and by tiling the texture less. Texture Bit Depth A texture is just an image file. This means most of the theory you're familiar with when it comes to working with images also applies to textures. One such would be bit depth. Here you will see such numbers as 8, 16, 24, and 32 bits. These each correspond to the amount of color data that is stored for each image.

      How do we get the number 24 from an image file? Well, the number 24 refers to how many bits it contains. That is, that you have 3 channels, red, green, and blue, all of which are simply channels which contain a gray scale image, but are added together to produce a full color image. So black, in the red channel, means "no red" at that point, while white in the red channel means "lots of red". Same applies to blue and green. When these are combined, they produce a full color image, a mix of Red, Green and Blue (if using the RGB color model). The bits come in by the fact that they define how many levels of gray each channel has: 8 bits per channel, over 3 channels, is 24 bits total.

      8 bits gives you 256 levels of gray. Combining the idea that 8 bits gives you 256 levels of gray and that each channel is simply gray scale and different levels of gray define a level within that color, we can then see that a 24 bit image will give us 16,777,216 different colors to play with. That is, 8 bits x 3 channels= 24 bits, 8 bits= 256 gray scale levels, so 256 x 3= 16,777,216 colors. This knowledge comes in useful when at certain times it is easier to edit the RGB channels individually, with a correct understanding you can then delve deeper into editing your textures.

      However, with the increase in shader use, you'll often see a 32 bit image/texture file. These are image files which contain 4 channels, each of 8 bits: 4 x 8 = 32. This allows a developer to use the 4th channel to carry a unique control map or extra data needed for shaders. Since each channel is gray scale, a 32 bit image is ideal to carry a full color texture along with an extra map within it. Depending on your engine you may see a full color texture with the extra 4th channel being used to hold a gray scale map for transparency (more commonly known as an "alpha channel"), specular control map, or a gray scale map along with a normal map in the other channels to be used for parallax mapping.

      As you paint your textures you may start to realize that you're probably not using all of the colors available to you in a 24 bit image. And you're probably right, this is why artists can at times use a lower bit depth texture to achieve the same or near the same look with a lesser memory footprint. There are certain cases where you will more than likely need a 24 bit image however: If your image/texture contains frequent gradations in the color or shading, then a 24 bit image is required. However, if your image/texture contains solid colors, little detail, little or no shading, and so on, you can probably get away with a 16, 8, or perhaps even a 4 bit texture.

      Often, this type of memory conservation technique is best done when the artist is able to choose/make his own color pallette. This is where you hand pick the colors that will be saved with your image, instead of letting the computer automatically choose. By using a careful eye you have the possibility to choose more optimal colors which will fit your texture better. Basically, in a way, all you're doing is throwing out what would be considered useless colors which are being stored in the texture but not being used. Making Normal Maps There are two methods for creating normal maps: Using a detailed mesh/model. Creating a normal map from an image.
      The first method is part of a common workflow that nearly all modelers who support normal map generation use. For generating a normal map from a model you can either generate it out to a straight texture, or if you're generating your normal map from a high-poly mesh, it is common to then model the low poly mesh around your high-poly mesh. (Some artists have prefer for modeling the low-poly version first while others like to do the high then the low, in the end there is no perfect way, its just preference.)

      For example: you have a high-poly rock, you will then model/build a low poly mesh around the high, then UVW unwrap it, and generate the normal map from your high-poly version. Virtual "rays" will be cast from the high- to the low-poly model -- a technique known as "projecting". This allows for a better application of your high-poly mesh normal map to your low-poly mesh since you're projecting the detail from the high to the low. However, some applications will switch the requirements and have your low poly mesh be inside your high, and others allow the rays for generating the normal map to be cast both ways. So refer to your application tutorials for how to do this as it may vary. Creating a normal map from an image. This method can be quicker than the more common method described above. For this, all you need is an edited version of your diffuse map. The key to good-looking image-based normal maps is to edit out any unneeded information for your grayscale diffuse texture. If your diffuse has any baked-in specular, shadows, or any information that does not define depth, this needs to be removed from the image. Also, anything that is extra, like strips of paint on a concrete texture, that too should be edited out. This is because, just like bump maps, and displacement maps, the colour of the pixels defines depth, with lighter pixels being "higher" than darker pixels. So, if you have specular (will turn white when made gray), it will be interpreted as a bump in your normal map, you don't want this if the specular in fact lays on a flat surface. The same applies to shadows and everything else mentioned: it will all interfere with the normal map generation process. You simply want to only have various shades of gray represent various depths, any other data in the texture will not produce the correct results.

      For generating normal maps you can always use the Nvidia Plugin, however it takes a lot of tweaking to get a good looking normal map. As such, I recommend Crazy Bump!. Crazy Bump will produce some very good normal maps if the given texture it is generating it from is good. Combining the two methods. It is common, even if you're generating a normal map from a 3d high-poly mesh to then generate an image generated normal map and overlay it over the high-poly generated one. This is done by generating one from your diffuse map, filling the resulting normal map's blue channel with 128 neutral gray, and then overlaying this over your high-poly generated one. This is done to add in those small details that only the image can generate. This way you get the high frequency detail along with the nice and cleanly generated mid-to-low frequency detail from your high-poly generated normal map. Pixel Density and Fill Rate Limitation Let's say you have a coin that you just finished UVW unwrapping, it will indeed be very small once in-game, however you decide it would be fine to use a 1024x1024 texture. What is wrong with the above situation? Firstly, you shouldn't need to UVW unwrap a coin! Furthermore, you should not be applying the 1024x1024 texture! Not only is this wasteful of video memory, but it will result in uneven pixel density and will increase your fill rate on that model for no reason. A good rule of thumb is to only use the amount of resources that would make sense based on how much screen space an object will take up. A building will take up more of the screen than a coin, so it needs a higher resolution texture and more polygons. A coin takes up less screen space and therefore needs fewer polys and a lower resolution texture to obtain a similar pixel density.

      So, what is pixel density? It is the density of each pixel from a texture on a mesh. For example, take the UVW unwrapping tutorial linked to in the "Texture Image Size" section: There you will see a checkered pattern, this is not only used to make sure the texture is applied right, but to also keep track of pixel density. If you increased the pixel density, you would see the checkered pattern get more dense; if you decrease the density, the checkered pattern would be less dense, with fewer squares showing.

      Maintaining a consistent pixel density in a game helps all of the art fit together. How would you feel if your high pixel density character walks up to a wall with a significantly lower pixel density? Your eyes would be able to compare the two and see that the wall looks like crap compared to the character, however would this same thing happen if the character were near the same pixel density of the wall? Probably not -- such things only become apparent (within reason) to the end user if they have something to compare it to. If you keep a consistent pixel density throughout all of the game's assets, you will see all of it fits together better.

      It is important to note that there is one other reason for this, but we'll come to it in a moment. First, we need to look at two related problems that can arise: transform(ation) limited and fill-rate limited modeling. A transform-limited model will have less pixel density per polygon than a fill-rate limited model where it has a higher pixel density per polygon. The theory is that a model takes longer on either processing the polys, or processing the actual pixel-dense surface. Knowing this, we can see that our coin, with very few polys will have a giant pixel density per polygon, resulting in a fill rate limited mesh. However, it does not need to be fill rate limited if we lower the texture resolution, resulting in a lower pixel density.

      The point is that your mesh will be held back when rendering based on which process takes longer: transform or fill rate. If your mesh is fill rate limited then you can speed up its processing by decreasing its pixel density, and its speed will increase until you reach transform limitation, in which your mesh is now taking longer to render based on the amount of polygons it contains. In the latter case, you would then speed up the processing of the model by decreasing the amount of polygons the model contains. That is, until you decrease the polygon count to the point where you're now fill rate limited once again! As you can see, it's a balancing act. The trick is to maximize the speed of the transform and fill rate processing (minimize the impact of both as much as you can), to get the best possible processing speed for your mesh.

      That said, being fill rate limited can sometimes be a good thing. The majority of "next-gen" games are fill rate limited primarily because of their use of texture/shading techniques. So, if you can't possibly get any lower on the fill rate limitation and you're still fill rate limited, then you have a little bit of wiggle room to work around where you can actually introduce more polygons with no performance hit. However, you should always try to cut down on fill rate limitations when possible because of general performance concerns

      Some methods revolve around splitting up a single polygon into multiple polygons on a single mesh (like a wall for example). This works by then decreasing the pixel density and processing (shaders) for the single polygon by splitting the work into multiple polygons. There are other methods for dealing with fill rate limitation, but mainly it is as simple as keeping your pixel density at a reasonable level.       MipMaps It is fitting that after we discuss pixel density and fill rate limitation that we discuss a thing called Mipmapping. Mipmaps (or mip maps) are a collection of precomputed lower resolution image copies for a texture contained in the texture. Let's say you have a 1024x1024 texture. If you generate mipmaps for your texture, it will contain the original 1024x1024 texture, but it will also contain a 512x512, 256x256, 128x128, 64x64, 32x32, 16x16, 8x8, 4x4, 2x2 version of the same texture, (exactly how many levels there are is up to you). These smaller mipmaps (textures) are then used in sequence, one after the other, according to the model's distance from the camera in the scene. If your model uses a 1024x1024 texture up close, it may be using a 256x256 texture when further away, and an even smaller mipmap texture level when it's way off in the distance. This is done because of many things: The further away you are from your mesh, the less polygonal and texture detail is needed. This is because all displays have a fixed display resolution and it is physically impossible for the player to decipher the detail of a 1024x1024 texture and 6,000 polygon mesh when the model takes up only 20 pixels on screen. The further away we are from the mesh, the fewer the polygons and the lower the texture resolution we need to render it. Because of the whole fill rate limitation described above, it is beneficial to use mipmaps as less texture detail must be processed for distant meshes. This results is a less fill-rate-heavy scene because only the closer models are receiving larger textures, whereas more distant models are receiving smaller textures. Texture filtering. What happens when the player tries to view a 1024x1024 texture at such a distance that only 40 pixels are given to render the mesh on screen? You get noise and aliasing artefacts! Without mipmaps, any textures too large for the display resolution will only result in unneeded and unwanted noise. Instead of filtering out this noise, mipmaps use a lower resolution texture for different distances, this results in less noise. It is important to note, that while mipmaps will increase performance overall, you're actually increasing your texture memory usage. The mipmaps and the whole texture will be loaded into memory. However, it is possible to have a system where the user or dev can select the highest mipmap they want and the ones higher than this limit will not be loaded into memory (as the system we're using now), however the mipmaps which meet or are lower than this limit will still be loaded into memory. It is widely agreed that the benefits of mipmaps vastly outweigh the small memory hit. NOTE: Mesh detail can also affect performance, so the equivalent method used for mesh detail is known as LOD -- "Level Of Detail. Multiple versions of the mesh itself are stored at different levels of detail. The less-detailed mesh is rendered when it's a long way away. Like mipmaps, a mesh can have any number of levels of detail you feel it requires.

      The image below is of a level I created which makes use of most of what we've discussed. It makes use of S3TC compressed textures, normal mapping, diffuse mapping, specular mapping, and tiled textures.
         
      0 comments
    6. Sounds This is our final part, 5 of a series on creating a game with the Orx Portable Game Engine. Part 1 is here, and part 4 is here. It's great that collecting the pickups work, but a silent game is pretty bland. It would be great to have a sound play whenever a pickup is collected. Start by configuring a sound:   [PickupSound] Sound = pickup.ogg KeepInCache = true   Then as part of the collision detection in the PhysicsEventHandler function, we change the code to be:   if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstRecipientObject, 0); orxObject_AddSound(pstSenderObject, "PickupSound"); } if (orxString_SearchString(senderName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstSenderObject, 0); orxObject_AddSound(pstRecipientObject, "PickupSound"); }   In code above, if the recipient is a pickup object, then use the orxObject_AddSound function to place our sound on the sender object. There's little point adding a sound to an object that is about to be deleted. And of course, if the pickup object is the sender, we add the sound to the recipient object. Also, the PickupSound that is added to the object, is the config section name we just defined in the config. Compile and run. Hit the pickups and a sound will play. You can also use sounds without code. There is an AppearSound section already available in the config. We can use this sound on the ufo when it first appears in the game. This is as simple as adding a SoundList property to the ufo:   [UfoObject] Graphic = UfoGraphic Position = (0, 0, -0.1) Body = UfoBody AngularVelocity = 200 SoundList = SoundAppear   Re-run and a nice sound plays at the start of the game.   Adding a score What's a game without a score? We need to earn points for every pickup that is collected. The great thing about Orx objects is that they don't have to contain a texture as a graphic. They can contain a font and text rendered to a graphic instead. This is perfect for making a score object. Start by adding some config for the ScoreObject:   [ScoreObject] Graphic = ScoreTextGraphic Position = (-380, -280, 0)   Next, to add the ScoreTextGraphic section, which will not be a texture, but text instead:   [ScoreTextGraphic] Text = ScoreText   Now to define the ScoreText which is the section that contains the text information:   [ScoreText] String = 10000   The String property contains the actual text characters. This will be the default text when a ScoreObject instance is created in code. Let's now create an instance of the ScoreObject in the Init() function:   orxObject_CreateFromConfig("ScoreObject");   So far, the Init() function should look like this:   orxSTATUS orxFASTCALL Init() { orxVIEWPORT *viewport = orxViewport_CreateFromConfig("Viewport"); camera = orxViewport_GetCamera(viewport); orxObject_CreateFromConfig("BackgroundObject"); ufo = orxObject_CreateFromConfig("UfoObject"); orxCamera_SetParent(camera, ufo); orxObject_CreateFromConfig("PickupObjects"); orxObject_CreateFromConfig("ScoreObject"); orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE), Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL); orxEvent_AddHandler(orxEVENT_TYPE_PHYSICS, PhysicsEventHandler); return orxSTATUS_SUCCESS; }   Compile and run. There should be a score object in the top left hand corner displaying: 10000 The score is pretty small. And it's fixed into the top left corner of the playfield. That's not really what we want. A score is an example of a User Interface (UI) element. It should be fixed in the same place on the screen. Not move around when the screen scrolls. The score should in fact, be fixed as a child to the Camera. Wherever the Camera goes, the score object should go with it. This can be achieved with the ParentCamera property, and then setting the position of the score relative to the camera's centre position:   [ScoreObject] Graphic = ScoreTextGraphic Position = (-380, -280, 0) ParentCamera = Camera UseParentSpace = false   With these changes, we've stated that we want the Camera to be the parent of the ScoreObject. In other words, we want the ScoreObject to travel with the Camera and appear to be fixed on the screen. By saying that we don't want to UseParentSpace means that we want specify relative world coordinates from the centre of the camera. If we said yes, we'd have to specify coordinates in another system. And Position, of course, is the position relative to the center of the camera. In our case, moved to the top left corner position. Re-run and you'll see the score in much the same position as before, but when you move the ufo around, and the screen scrolls, the score object remains fixed in the same place. The only thing, it's still a little small. We can double its size using Scale:   [ScoreObject] Graphic = ScoreTextGraphic Position = (-380, -280, 0) ParentCamera = Camera UseParentSpace = false Scale = 2.0 Smoothing = false Smoothing has been set to false so that when the text is scaled up, it will be sharp and pixellated rather than smoothed up which looks odd. All objects in our project are smooth be default due to:   [Display] Smoothing = true: So we need to explicitly set the score to not smooth. Re-run. That looks a lot better. To actually make use of the score object, we will need a variable in code of type int to keep track of the score. Every clock cycle, we'll take that value and change the text on the ScoreObject. That is another cool feature of Orx text objects: the text can be changed any time, and the object will re-render. Finally, when the ufo collides with the pickup, and the pickup is destroyed, the score variable will be increased. The clock will pick up the variable value and set the score object. Begin by creating a score variable at the very top of the code:   #include "orx.h" orxOBJECT *ufo; orxCAMERA *camera; int score = 0;   Change the comparison code inside the PhysicsEventHandler function to increase the score by 150 points every time a pickup is collected:   if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstRecipientObject, 0); orxObject_AddSound(pstSenderObject, "PickupSound"); score += 150; } if (orxString_SearchString(senderName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstSenderObject, 0); orxObject_AddSound(pstRecipientObject, "PickupSound"); score += 150; }   Now we need a way to change the text of the score object. We declared the score object in the Init() function as:   orxObject_CreateFromConfig("ScoreObject");   But we really need to create it using an orxOBJECT variable:   scoreObject = orxObject_CreateFromConfig("ScoreObject");   And then declare the scoreObject at the top of the file:   #include "orx.h" orxOBJECT *ufo; orxCAMERA *camera; orxOBJECT *scoreObject; int score = 0;   Now it is possible to update the scoreObject using our score variable. At the bottom of the Update() function, add the following code:   if (scoreObject) { orxCHAR formattedScore[5]; orxString_Print(formattedScore, "%d", score); orxObject_SetTextString(scoreObject, formattedScore); }   First, the block will only execute if there is a valid scoreObject. If so, then create a 5 character string. Then print into the string with the score value, effectively converting an int into a string. Finally set the score text to the scoreObject using the orxObject_SetTextString function. Compile and Run. Move the ufo around and collect the pickups to increase the score 150 points at a time.   Winning the game 1200 is the maximum amount of points that can be awarded, and that will mean we've won the game. If we do win, we want a text label to appear above the ufo, saying “You win!”. Like the score object, we need to define a YouWinObject:   [YouWinObject] Graphic = YouWinTextGraphic Position = (0, -60, 0.0) Scale = 2.0 Smoothing = false   Just like the camera, the YouWinObject is going to be parented to the ufo too. This will give the appearance that the YouWinObject is part of the ufo. The Scale is set to x2. The Position is set offset up in the y axis so that it appears above the ufo. Next, the actual YouWinTextGraphic:   [YouWinTextGraphic] Text = YouWinText Pivot = center   And the text to render into the YouWinTextGraphic:   [YouWinText] String = You Win!   We'll test it by creating an instance of the YouWinObject, putting it into a variable, and then parent it to the ufo in the Init() function:   orxObject_CreateFromConfig("PickupObjects"); scoreObject = orxObject_CreateFromConfig("ScoreObject"); ufoYouWinTextObject = orxObject_CreateFromConfig("YouWinObject"); orxObject_SetParent(ufoYouWinTextObject, ufo);   Then the variable:   #include "orx.h" orxOBJECT *ufo; orxCAMERA *camera; orxOBJECT *ufoYouWinTextObject; orxOBJECT *scoreObject; int score = 0;   Compile and Run. The “You win” text should appear above the ufo. Not bad, but the text is rotating with the ufo much like the camera was before. We can ignore the rotation from the parent on this object too:   [YouWinObject] Graphic = YouWinTextGraphic Position = (0, -60, 0.0) Scale = 2.0 Smoothing = false IgnoreFromParent = rotation   Re-run. Interesting. It certainly isn't rotating with the ufo, but its position is still being taken from the ufo's rotation. We need to ignore this as well:   [YouWinObject] Graphic = YouWinTextGraphic Position = (0, -60, 0.0) Scale = 2.0 Smoothing = false IgnoreFromParent = position.rotation rotation   Good that's working right. We want the “You Win!” to appear once all pickups are collected. The YouWinObject object on created on the screen when the game starts. But we don't want it to appear yet. Only when we win. Therefore, we need to disable the object immediately after it is created using the orxObject_Enable function:   ufoYouWinTextObject = orxObject_CreateFromConfig("YouWinObject"); orxObject_SetParent(ufoYouWinTextObject, ufo); orxObject_Enable(ufoYouWinTextObject, orxFALSE);   Finally, all that is left to do is add a small check in the PhysicsEventHandler function to test the current score after each pickup collision:   if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstRecipientObject, 0); orxObject_AddSound(pstSenderObject, "PickupSound"); score += 150; } if (orxString_SearchString(senderName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstSenderObject, 0); orxObject_AddSound(pstRecipientObject, "PickupSound"); score += 150; } if (orxObject_IsEnabled(ufoYouWinTextObject) == orxFALSE && score == 1200) { orxObject_Enable(ufoYouWinTextObject, orxTRUE); }   We are checking two things: that the ufoYouWinTextObject is not yet enabled using the orxObject_IsEnabled function, and if the score is 1200. If both conditions are met, enable the ufoYouWinTextObject. Compile and run. Move the ufo around and collect all the pickups. When all are picked up and 1200 is reached, the “You Win!” text should appear above the ufo signifying that the game is over and we have won. And that brings us to the end! We have created a simple and complete game with some configuration and minimal code. Congratulations! I hope you enjoyed working through making the ufo game using the Orx Portable Game Engine. Of course, there are many little extras you can add to give your game that little extra polish. So, for just a bit more eye candy, there a couple more sections that you can follow along with if you wish.   Shadows There are many ways to do shadows. One method is to use shaders… though this method is a little beyond this simple guide. Another method, when making your graphics, would be to add an alpha shadow underneath. This is a good method if your object does not need to rotate or flip. The method I will show you in this chapter is to have a separate shadow object as a child of an object. And in order to remain independent of rotations, the children will ignore rotations from the parent. First a shadow graphic for the ufo, and one for the pickups:   Save these both into the data/texture folder. Then create config for the ufo shadow:   [UfoShadowGraphic] Texture = ufo-shadow.png Alpha = 0.3 Pivot = center   The only interesting part is the Alpha property. 0.1 would be almost completely see-through (or transparent), and 1.0 is not see-through at all, which is the regular default value for a graphic. 0.3 is fairly see-through.   [UfoShadowObject] Graphic = UfoShadowGraphic Position = (20, 20, 0.05)   Set the Position a bit to the right, and downwards. Next, add the UfoShadowObject as a child of the UfoObject:   [UfoObject] Graphic = UfoGraphic Position = (0,0, -0.1) Body = UfoBody AngularVelocity = 200 UseParentSpace = position SoundList = AppearSound ChildList = UfoShadowObject   Run the project. The shadow child is sitting properly behind the ufo but it rotates around the ufo, until it ends up at the bottom left which is not correct. We'll need to ignore the rotation from the parent:   [UfoShadowObject] Graphic = UfoShadowGraphic Position = (20, 20, 0.05) IgnoreFromParent = position.rotation rotation   Not only do we need to ignore the rotation of ufo, we also need to ignore the rotation position of the ufo. Re-run and the shadow sits nice and stable to the bottom right of the ufo. Now to do the same with the pickup shadow:   [PickupShadowGraphic] Texture = pickup-shadow.png Alpha = 0.3 Pivot = center [PickupShadowObject] Graphic = PickupShadowGraphic Position = (20, 20, 0.05) IgnoreFromParent = position.rotation   The only difference between this object and the ufo shadow, is that we want the pickup shadow to take the rotation value from the parent. But we do not want to take the position rotation. That way, the pickup shadow will remain in the bottom right of the pickup, but will rotate nicely in place. Now attach as a child to the pickup object:   [PickupObject] Graphic = PickupGraphic FXList = RotateFX Body = PickupBody ChildList = PickupShadowObject   Re-run, and the shadows should all be working correctly. And that really is it this time. I hope you made it this far and that you enjoyed this series of articles on the Orx Portable Game Engine. If you like what you see and would like to try out a few more things with Orx, head over our learning wiki where you can follow more beginner guides, tutorials and examples. You can always get the latest news on Orx at the official website. If you need any help, you can get in touch with the community on gitter, or at the forum. They're a friendly helpful bunch over there, always ready to welcome newcomers and assist with any questions.    
      0 comments
    7. Creating Pickup Objects This is part 4 of a series on creating a game with the Orx Portable Game Engine. Part 1 is here, and part 3 is here. In our game, the player will be required to collect objects scattered around the playfield with the ufo. When the ufo collides with one, the object will disappear, giving the impression that it has been picked up. Begin by creating a config section for the graphic, and then the pickup object:   [PickupGraphic] Texture = pickup.png Pivot = center [PickupObject] Graphic = PickupGraphic   The graphic will use the image pickup.png which is located in the project's data/object folder. It will also be pivoted in the center which will be handy for a rotation effect later. Finally, the pickup object uses the pickup graphic. Nice and easy. Our game will have eight pickup objects. We need a simple way to have eight of these objects in various places. We will employ a nice trick to handle this. We will make an empty object, called PickupObjects which will hold eight copies of the pickup object as child objects. That way, wherever the parent is moved, the children move with it. Add that now:   [PickupObjects] ChildList = PickupObject1 # PickupObject2 # PickupObject3 # PickupObject4 # PickupObject5 # PickupObject6 # PickupObject7 # PickupObject8 Position = (-400, -300, -0.1)   This object will have no graphic. That's ok. It can still act like any other object. Notice the position. It is being positioned in the top left hand corner of the screen. All of the child objects PickupObject1 to PickupObject8 will be positioned relative to the parent in the top left corner. Now to create the actual children. We'll use the inheritance trick again, and just use PickupObject as a template:   [PickupObject1@PickupObject] Position = (370, 70, -0.1) [PickupObject2@PickupObject] Position = (210, 140, -0.1) [PickupObject3@PickupObject] Position = (115, 295, -0.1) [PickupObject4@PickupObject] Position = (215, 445, -0.1) [PickupObject5@PickupObject] Position = (400, 510, -0.1) [PickupObject6@PickupObject] Position = (550, 420, -0.1) [PickupObject7@PickupObject] Position = (660, 290, -0.1) [PickupObject8@PickupObject] Position = (550, 150, -0.1)   Each of the PickupObject* objects uses the properties defined in PickupObject. And the only difference between them are their Position properties. The last thing to do is to create an instance of PickupObjects in code in the Init() function:   orxObject_CreateFromConfig("PickupObjects");   Compile and Run. Eight pickup objects should appear on screen. Looking good. It would look good if the pickups rotated slowly on screen, just to make them more interesting. This is very easy to achieve in Orx using FX. FX can also be defined in config. FX allows you to affect an object's position, colour, rotation, scaling, etc, even sound can be affected by FX. Change the PickupObject by adding a FXList property:   [PickupObject] Graphic = PickupGraphic FXList = SlowRotateFX   Clearly being an FXList you can have many types of FX placed on an object at the same time. We will only have one. An FX is a collection of FX Slots. FX Slots are the actual effects themselves. Confused? Let's work through it. First, the FX:   [SlowRotateFX] SlotList = SlowRotateFXSlot Loop = true   This simply means, use some effect called SlowRotateFXSlot, and when it is done, do it again in a loop. Next the slot (or effect):   [SlowRotateFXSlot] Type = rotation StartTime = 0 EndTime = 10 Curve = linear StartValue = 0 EndValue = 360   That's a few properties. First, the Type, which is a rotation FX. The total time for the FX is 10 seconds, which comes from the StartTime and EndTime properties. The Curve type is linear so that the values changes are done so in a strict and even manner. And the values which the curve uses over the 10 second period starts from 0 and climbs to 360. Re-run and notice the pickups now turning slowly for 10 seconds and then repeating.   Picking up the collectable objects Time to make the ufo collide with the pickups. In order for this to work (just like for the walls) the pickups need a body. And the body needs to be set to collide with a ufo and vice versa. First a body for the pickup template:   [PickupObject] Graphic = PickupGraphic FXList = SlowRotateFX Body = PickupBody   Then the body section itself:   [PickupBody] Dynamic = false PartList = PickupPart   Just like the wall, the pickups are not dynamic. We don't want them bouncing and traveling around as a result of being hit by the ufo. They are static and need to stay in place if they are hit. Next to define the PickupPart:   [PickupPart] Type = sphere Solid = false SelfFlags = pickup CheckMask = ufo   The pickup is sort of roundish, so we're going with a spherical type. It is not solid. We want the ufo to able to pass through it when it collides. It should not influence the ufo's travel at all. The pickup is given a label of pickup and will only collide with an object with a label of ufo. The ufo must reciprocate this arrangement (just like a good date) by adding pickup to its list of bodypart check masks:   [UfoBodyPart] Type = sphere Solid = true SelfFlags = ufo Friction = 1.2 CheckMask = wall # pickup   This is a static bodypart, and we have specified collision actions to occur if the ufo collides with a pickup. But it's a little difficult to test this right now. However you can turn on the debug again to check the body parts:   [Physics] Gravity = (0, 0, 0) ShowDebug = true   Re-run to see the body parts. Switch off again:   [Physics] Gravity = (0, 0, 0) ShowDebug = false   To cause a code event to occur when the ufo hits a pickup, we need something new: a physics hander. The hander will run a function of our choosing whenever two objects collide. We can test for these two objects to see if they are the ones we are interested in, and run some code if they are. First, add the physics hander to the end of the Init() function:   orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE), Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL); orxEvent_AddHandler(orxEVENT_TYPE_PHYSICS, PhysicsEventHandler);   This will create a physics handler, and should any physics event occur, (like two objects colliding) then a function called PhysicsEventHandler will be executed. Our new function will start as:   orxSTATUS orxFASTCALL PhysicsEventHandler(const orxEVENT *_pstEvent) { if (_pstEvent->eID == orxPHYSICS_EVENT_CONTACT_ADD) { orxOBJECT *pstRecipientObject, *pstSenderObject; /* Gets colliding objects */ pstRecipientObject = orxOBJECT(_pstEvent->hRecipient); pstSenderObject = orxOBJECT(_pstEvent->hSender); const orxSTRING recipientName = orxObject_GetName(pstRecipientObject); const orxSTRING senderName = orxObject_GetName(pstSenderObject); orxLOG("Object %s has collided with %s", senderName, recipientName); return orxSTATUS_SUCCESS; } }   Every handler function passes an orxEVENT object in. This structure contains a lot of information about the event. The eID is tested to ensure that the type of physics event that has occurred is a orxPHYSICS_EVENT_CONTACT_ADD which indicates when objects collide. If true, then two orxOBJECT variables are declared, then set from the orxEVENT structure. They are passed in as the hSender and hRecipient objects. Next, two orxSTRINGs are declared and are set by getting the names of the objects using the orxObject_GetName function. The name that is returned is the section name from the config. Potential candidates are: UfoObject, BackgroundObject, and PickupObject1 to PickupObject8. The names are then sent to the console. Finally, the function returns orxSTATUS_SUCCESS which is required by an event function. Compile and run. If you drive the ufo into a pickup or the edge of the playfield, a message will display on the console. So we know that all is working. Next is to add code to remove a pickup from the playfield if the ufo collides with it. Usually we could compare the name of one object to another and perform the action. In this case, however, the pickups are named different things: PickupObject1, PickupObject2, PickupObject3… up to PickupObject8. So we will need to actually just check if the name contains “PickupObject” which will match well for any of them. In fact, we don't need to test for the “other” object in the pair of colliding objects. Ufo is a dynamic object and everything else on screen is static. So if anything collides with PickupObject*, it has to be the ufo. Therefore, we won't need to test for that. First, remove the orxLOG line. We don't need that anymore. Change the function to become:   orxSTATUS orxFASTCALL PhysicsEventHandler(const orxEVENT *_pstEvent) { if (_pstEvent->eID == orxPHYSICS_EVENT_CONTACT_ADD) { orxOBJECT *pstRecipientObject, *pstSenderObject; /* Gets colliding objects */ pstRecipientObject = orxOBJECT(_pstEvent->hRecipient); pstSenderObject = orxOBJECT(_pstEvent->hSender); const orxSTRING recipientName = orxObject_GetName(pstRecipientObject); const orxSTRING senderName = orxObject_GetName(pstSenderObject); if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstRecipientObject, 0); } if (orxString_SearchString(senderName, "PickupObject") != orxNULL) { orxObject_SetLifeTime(pstSenderObject, 0); } } return orxSTATUS_SUCCESS; }   You can see the new code additions after the object names. If an object name contains the word “PickupObject”, then the ufo must have collided with it. Therefore, we need to kill it off. The safest way to do this is by setting the object's lifetime to 0. This will ensure the object is removed instantly and deleted by Orx in a safe manner. Notice that the test is performed twice. Once, if the pickup object is the sender, and again if the object is the recipient. Therefore we need to check and handle both. Compile and run. Move the ufo over the pickups and they should disappear nicely. We'll leave it there for the moment. In the final, Part 5, we'll cover adding sounds, a score, and winning the game.
      0 comments
    8. Collisions This is part 3 of a series on creating a game with the Orx Portable Game Engine. Part 1 is here, and Part 2 is here. There is one last requirement for the collision to occur: we need to tell the physics system, who can collide with who. This is done with flags and masks. Make a change to the ufo's body part by adding SelfFlags and CheckMask:   [UfoBodyPart] Type = sphere Solid = true SelfFlags = ufo CheckMask = wall   SelfFlags is the label you assign to one object, and CheckMask is the list of labels that your object can collide with. These labels don't have to match the names you give objects, however it will help you stay clean and organised. So in the config above, we are saying: the UfoBodyPart is a “ufo” and it is expected to collide with any bodypart marked as a “wall”. But we haven't done that yet, so let's do it now. We will only need to add it to the WallTopPart:   [WallTopPart] Type = box Solid = true SelfFlags = wall CheckMask = ufo TopLeft = (-400, -300, 0) BottomRight = (400, -260, 0)   Remember, that the other three wall parts inherit the values from WallTopPart. So each now carries the label of “wall” and they will collide with any other body part that carries the label of “ufo”. Re-run and press the left arrow key and drive the ufo into the left wall. It collides! And it stops. Now that the collision is working, we can flesh out the rest of the keyboard controls and test all four walls:   void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext) { if (ufo) { const orxFLOAT FORCE = 0.8; orxVECTOR rightForce = { FORCE, 0, 0 }; orxVECTOR leftForce = { -FORCE, 0, 0 }; orxVECTOR upForce = { 0, -FORCE, 0 }; orxVECTOR downForce = { 0, FORCE, 0 }; if (orxInput_IsActive("GoLeft")) { orxObject_ApplyForce(ufo, &leftForce, orxNULL); } if (orxInput_IsActive("GoRight")) { orxObject_ApplyForce(ufo, &rightForce, orxNULL); } if (orxInput_IsActive("GoUp")) { orxObject_ApplyForce(ufo, &upForce, orxNULL); } if (orxInput_IsActive("GoDown")) { orxObject_ApplyForce(ufo, &downForce, orxNULL); } } }   Now is a good time to turn off the physics debug as we did earlier on. Compile and run. Try all four keys, and you should be able to move the ufo around the screen. The ufo can also collide with each wall. The ufo is a little boring in the way that it doesn't spin when colliding with a wall. We need to ensure the UfoBody is not using fixed rotation. While this value defaults to false when not supplied, it will make things more readable if we explicitly set it:   [UfoBody] Dynamic = true PartList = UfoBodyPart FixedRotation = false   The active ingredient here is to ensure that both the wall bodypart and the ufo bodypart both have a little friction applied. This way when they collide, they will drag against each other and produce some spin:   [UfoBodyPart] Type = sphere Solid = true SelfFlags = ufo CheckMask = wall Friction = 1.2 [WallTopPart] Type = box Solid = true SelfFlags = wall CheckMask = ufo TopLeft = (-400, -300, 0) BottomRight = (400, -260, 0) Friction = 1.2   Re-run that and give it a try. Run against a wall on angle to get some spin on the ufo. The next thing to notice is that both the movement of the ufo and the spin never slow down. There is no friction to slow those down. We'll deal with the spin first. By adding some AngularDamping on the UfoBody, the spin will slow down over time:   [UfoBody] Dynamic = true PartList = UfoBodyPart AngularDamping = 2 FixedRotation = false   Re-run and check the spin. The ufo should be slowing down after leaving the wall. Now for the damping on the movement. That can be done with LinearDamping on the UfoBody:   [UfoBody] Dynamic = true PartList = UfoBodyPart AngularDamping = 2 FixedRotation = false LinearDamping = 5   Re-run and the speed will slow down after releasing the arrow keys. But it's slower overall as well. Not 100% what we want. You can increase the FORCE value in code (ufo.cpp), in the Update function to compensate:   const orxFLOAT FORCE = 1.8;   Compile and run. The speed should be more what we expect. It would be nice for the ufo to be already spinning a little when the game starts. For this, add a little AngularVelocity :   [UfoObject] Graphic = UfoGraphic Position = (0, 0, -0.1) Body = UfoBody AngularVelocity = 200   Run this and the ship will have a small amount of spin at the start until the AngularDamping on the ufo body slows it down again.   Following the UFO with the camera While we can simply move the ufo around with the keys on a fixed background, it will be a more pleasant experience to have the ufo fixed and have the screen scroll around instead. This effect can be achieved by parenting the camera to the ufo so that wherever the ufo goes, the camera goes. Currently, our project is set up so that the viewport has a camera configured to it. But the camera is not available to our code. We will require the camera to be available in a variable so that it can be parented to the ufo object. To fix this, in the Init() function, extract the camera from the viewport into a variable by first removing this line: orxViewport_CreateFromConfig("Viewport"); to: orxVIEWPORT *viewport = orxViewport_CreateFromConfig("Viewport"); camera = orxViewport_GetCamera(viewport);   And because the camera variable isn't defined, do so at the top of the code:   #include "orx.h" orxOBJECT *ufo; orxCAMERA *camera;   Now it is time to parent the camera to the ufo in the init() function using the orxCamera_SetParent function:   ufo = orxObject_CreateFromConfig("UfoObject"); orxCamera_SetParent(camera, ufo);   Compile and Run. Woah, hang on. That's crazy, the whole screen just rotated around when ufo. And it continues to rotate when hitting the ufo against the walls. See how the camera is a child of the ufo now? Not only does the camera move with the ufo, it rotates with it as well. We certainly want it to move with the ufo, but it would be nice ignore the rotation from the parent ufo. Add the IgnoreFromParent property to the MainCamera section:   [MainCamera] FrustumWidth = 1024 FrustumHeight = 720 FrustumFar = 2.0 FrustumNear = 0.0 Position = (0.0, 0.0, -1.0) IgnoreFromParent = rotation   Re-run. That's got it fixed. Now when you move around, the playfield will appear to scroll rather than it being the ufo that moves. This makes for a more dramatic and interesting effect. In Part 4, we will give the ufo something to do. The goal is to collect several pickups.
      0 comments
    9. The UFO This is part 2 of a series on creating a game with the Orx Portable Game Engine. Part 1 is here. We have a playfield, and now we need a UFO character for the player to control. The first step is the create the configuration for the ufo object in ufo.ini:   [UfoObject] Graphic = UfoGraphic Position = (0, 0, -0.1) This indicates that the UfoObject should use a graphic called UfoGraphic. Secondly, its position will be centered in the playfield with (x,y) = (0,0). The -0.1 is the Z-axis, and this will be placed above the BackgroundObject whose Z-axis is set to 0. Then the UfoGraphic which the UfoObject needs:   [UfoGraphic] Texture = ufo.png Pivot = center   Unlike the background object, our ufo object will need to be assigned to a variable. This will make it possible to affect the ufo using code: Create the variable for our ufo object just under the orx.h include line:   #include "orx.h" orxOBJECT *ufo;   And in the Init() function, create an instance of the ufo object with:   ufo = orxObject_CreateFromConfig("UfoObject");   Compile and run. You'll see a ufo object in front of the background. Excellent. Time to move to something a little more fun, moving the ufo.   Controlling the UFO The ufo is going to be controlled using the cursor arrow keys on the keyboard. The ufo will be moved by applying forces. Physics will be set up in the project in order to do this. Also, we will use a clock to call an update function regularly. This function will read and respond to key presses.   Defining Direction Keys Defining the keys is very straight forward. In the config file, expand the MainInput section in the ufo.ini by adding the four cursor keys:   [MainInput] KEY_ESCAPE = Quit KEY_UP = GoUp KEY_DOWN = GoDown KEY_LEFT = GoLeft KEY_RIGHT = GoRight   Each key is being given a label name, like: GoUp or GoDown. These label names are available in our code to test against. The next step is to create an update callback function in our code where the keys presses are checked:   void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext) { }   And in order to tie this function to a clock (the clock will execute this function over and over), add the following to bottom of the Init() function:   orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE), Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL);   That looks very scary and intimidating, but the only part that is important to you is the parameter with “Update”. This means, tell the existing core clock to continually call our “Update” function. Of course you can specify any function name here you like as long as it exists. Let's test a key to ensure that our event is working well. Add the following code into the Update function:   void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext) { if (ufo) { if (orxInput_IsActive("GoLeft")) { orxLOG("LEFT PRESSED!"); } } }   Every time Update is run, ufo is tested to ensure it exists, and then moves to check the input system for the label “GoLeft” (if it is active or pressed). Remember how GoLeft is bound to KEY_LEFT in the MainInput config section? If that condition is true, send “LEFT PRESSED!” to the console output window while the key is pressed or held down. Soon we'll replace the orxLOG line with a function that places force on the ufo. But before that, we need to add physics to the ufo. Compile and run. Press the left arrow key and take note of the console window. Every time you press or hold the key, the message is printed. Good, so key presses are working.   Physics In order to affect the ufo using forces, physics need to be enabled. Begin by adding a Physics config section and setting Gravity with:   [Physics] Gravity = (0, 980, 0)   In order for an object in Orx to be affected by physics, it needs both a dynamic body, and at least one bodypart. Give the ufo a body with the Body property:   [UfoObject] Graphic = UfoGraphic Position = (0, 0, -0.1) Body = UfoBody   Next, create the UfoBody section and define the UfoBodyPart property:   [UfoBody] Dynamic = true PartList = UfoBodyPart   The body part is set to Dynamic which means that it is affected by gravity and collisions. A body needs at least one part, and so we need to define the UfoBodyPart:   [UfoBodyPart] Type = sphere Solid = true   The body part Type is set to be a sphere which will automatically size itself around the object's size, and the body is to be solid so that if it should collide with anything, it will not pass through it. Compile and Run. The ufo falls through the floor. This is because of the gravity setting of 980 in the y axis which simulates world gravity. Our game is a top down game. So change the Gravity property to:   [Physics] Gravity = (0, 0, 0)   Re-run (no compile needed) and the ufo should remain in the centre of the screen. The Physics section has another handy property available to visually test physics bodies on objects: ShowDebug. Add this property with true:   [Physics] Gravity = (0, 0, 0) ShowDebug = true   Re-run, and you will see a pinkish sphere outline automatically sized around the ufo object. For now we'll turn that off again. You can do this by changing the ShowDebug value to false, adding a ; comment in front of the line or simply just deleting the line. We'll set our ShowDebug to false:   [Physics] Gravity = (0, 0, 0) ShowDebug = false   Let's add some force to the ufo if the left cursor key is pressed. Change the code in the Update function to be:   void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext) { if (ufo) { const orxFLOAT FORCE = 0.8; orxVECTOR leftForce= { -FORCE, 0, 0 }; if (orxInput_IsActive("GoLeft")) { orxObject_ApplyForce(ufo, &leftForce, orxNULL); } } }   The orxObject_ApplyForce function takes an orxVECTOR facing left and applies it to the ufo object. Compile and re-run. If you press and release the left arrow key, the ufo will move to the left. If you hold the left key down, the ufo will increase its speed and move out the left hand side of the screen. Even if you tap the left key once quickly, the ufo will still eventually travel out of the left of the screen. There is no friction yet to slow it down, or any barriers to stop it going out of the screen.   Barrier Around The Border Even though the background looks it has a border, it is really only a picture. In order to create a barrier for the ufo, we will need to wrap the edges using some body parts. This means, the background object will also be given a body, and four body parts, one for each wall. Start with adding a body to the object:   [BackgroundObject] Graphic = BackgroundGraphic Position = (0, 0, 0) Body = WallBody   And then the body itself:   [WallBody] Dynamic = false PartList = WallTopPart # WallRightPart # WallBottomPart # WallLeftPart   This is different from the ufo body. This body is not dynamic. This means that it is a static body, one that cannot be affected by gravity. But dynamic objects can still collide with it. Also, there are four parts to this body, unlike the ufo which only had one. Start with the WallTopPart first:   [WallTopPart] Type = box Solid = true TopLeft = (-400, -300, 0) BottomRight = (400, -260, 0)   In this part, the type is a box body part. It is set to solid for collisions, ie so that a dynamic object can collide with it but not pass though it. Stretch the box to cover the region from (-400,-300) to (400, -260). At this point, it might be a good idea to turn on the physics debugging to check our work:   [Physics] Gravity = (0, 0, 0) ShowDebug = true   Re-run the project. The top wall region should cover the top barrier squares:   Great. Next, we'll do the right hand side. But rather than copy all the same values, we'll reuse some from the top wall:   [WallRightPart@WallTopPart] TopLeft = (360, -260,0) BottomRight = (400, 260, 0)   Notice the @WallTopPart in the section name? This means: copy all the values from WallTopPart, but any properties in WallRightPart will take priority. Therefore, use the Type, and Solid properties from WallTopPart, but use our own values for TopLeft and BottomRight for the WallRightPart section. This is called “Section Inheritance”. This will come in very handy soon when we tweak values or add new properties to all four wall parts. Re-run the project, and there will now be two walls. Define the last two walls using the same technique:   [WallBottomPart@WallTopPart] TopLeft = (-400,260,0) BottomRight = (400, 300, 0) [WallLeftPart@WallTopPart] TopLeft = (-400,-260,0) BottomRight = (-360, 260, 0)   Now there are four walls for the ufo to collide with. Re-run and try moving the ufo left into the wall. Oops, it doesn't work. It still passes straight though. There is one last requirement for the collision to occur: we need to tell the physics system, who can collide with who. We'll cover that in Part 3.
      0 comments
    10. Overview Welcome to the 2D UFO game guide using the Orx Portable Game Engine. My aim for this tutorial is to take you through all the steps to build a UFO game from scratch. The aim of our game is to allow the player to control a UFO by applying physical forces to move it around. The player must collect pickups to increase their score to win. I should openly acknowledge that this series is cheekily inspired by the 2D UFO tutorial written for Unity. It makes an excellent comparison of the approaches between Orx and Unity. It is also a perfect way to highlight one of the major parts that makes Orx unique among other game engines, its Data Driven Configuration System. You'll get very familiar with this system very soon. It's at the very heart of just about every game written using Orx. If you are very new to game development, don't worry. We'll take it nice and slow and try to explain everything in very simple terms. The only knowledge you will need is some simple C++. I'd like say a huge thank you to FullyBugged for providing the graphics for this series of articles.   What are we making? Visit the video below to see the look and gameplay of the final game: Getting Orx The latest up to date version of Orx can be cloned from github and set up with: git clone https://github.com/orx/orx.git After cloning, an $ORX environment variable will be created automatically for your system which will help with making game projects much easier. It will also create several IDE projects for your operating system: Visual Studio, Codelite, Code::Blocks, and gmake. These Orx projects will allow you to compile the Orx library for use in your own projects. And the $ORX environment variable means that your projects will know where to find the Orx library. For more details on this step, visit http://orx-project.org/wiki/en/tutorials/cloning_orx_from_github at the Orx learning wiki. Setting up a 2D UFO Project Now the you have the Orx libraries cloned and compiled, you will need a blank project for your game. Supported options are: Visual Studio, CodeLite, Code::Blocks, XCode or gmake, depending on your operating system. Once you have a game project, you can use it to work through the steps in this tutorial. Orx provides a very nice system for auto creating game projects for you. In the root of the Orx repo, you will find either the init.bat (for Windows) or init.sh (Mac/Linux) command. Create a project for our 2D game from the command line in the Orx folder and running: init c:\temp\ufo or init.sh ~/ufo Orx will create a project for each IDE supported by your OS at the specified location. You can copy this folder anywhere, and your project will always compile and link due to the $ORX environment variable. It knows where the libraries and includes are for Orx. Open your project using your favourite IDE from within the ufo/build folder. When the blank template loads, there are two main folders to note in your solution: config src Firstly, the src folder contains a single source file, ufo.cpp. This is where we will add the c++ code for the game. The config folder contains configuration files for our game.   What is config? Orx is a data driven 2D game engine. Many of the elements in your game, like objects, spawners, music etc, do not need to be defined in code. They can be defined (or configured) using config files. You can make a range of complex multi-part objects with special behaviours and effects in Orx, and bring them into your game with a single line of code. You'll see this in the following chapters of this guide. There are three ufo config files in the config folder but for this guide, only one will actually be used in our game. This is: ufo.ini All our game configuration will be done there. Over in the Orx library repo folder under orx/code/bin, there are two other config files: CreationTemplate.ini SettingsTemplate.ini These are example configs and they list all the properties and values that are available to you. We will mainly concentrate on referring to the CreationTemplate.ini, which is for objects, sounds, etc. It's good idea to include these two files into your project for easy reference. Alternatively you can view these online at https://github.com/orx/orx/blob/master/code/bin/CreationTemplate.ini and here: https://github.com/orx/orx/blob/master/code/bin/SettingsTemplate.ini   The code template Now to take a look at the basic ufo.cpp and see what is contained there. The first function is the Init() function. This function will execute when the game starts up. Here you can create objects have been defined in the config, or perform other set up tasks like handlers. We'll do both of these soon. The Run() function is executed every main clock cycle. This is a good place to continually perform a task. Though there are better alternatives for this, and we will cover those later. This is mainly used to check for the quit key. The Exit() function is where memory is cleaned up when your game quits. Orx cleans up nicely after itself. We won't use this function as part of this guide. The Bootstrap() function is an optional function to use. This is used to tell Orx where to find the first config file for use in our game (ufo.ini). There is another way to do this, but for now, we'll use this function to inform Orx of the config. Then of course, the main() function. We do not need to use this function in this guide. Now that we have everything we need to get start, you should be able to compile successfully. Run the program and an Orx logo will appear slowly rotating. Great. So now you have everything you need to start building the UFO game.   Setting up the game assets Our game will have a background, a UFO which the player will control, and some pickups that the player can collect. The UFO will be controlled by the player using the cursor keys. First you'll need the assets to make the game. You can download the file  assets-for-orx-ufo-game.zip which contains: The background file (background.png): The UFO and Pickup sprite images (ufo.png and pickup.png):   And a pickup sound effect (pickup.ogg): pickup.ogg Copy the .png files into your data/texture folder Copy the .ogg file into your data/sound folder. Now these files can be accessed by your project and included in the game.   Setting up the Playfield We will start by setting up the background object. This is done using config. Open the ufo.ini config file in your editor and add the following:   [BackgroundGraphic] Texture = background.png Pivot = center   The BackgroundGraphic defined here is called a Graphic Section. It has two properties defined. The first is Texture which has been set as background.png. The Orx library knows where to find this image, due to the properties set in the Resource section:   [Resource] Texture = ../../data/texture   So any texture files that are required (just like in our BackgroundGraphic section) will be located in the ../../data/texture folder. The second parameter is Pivot. A pivot is the handle (or sometimes “hotspot” in other frameworks). This is set to be center. The position is 0,0 by default, just like the camera. The effect is to ensure the background sits in the center of our game window. There are other values available for Pivot. To see the list of values, open the CreationTemplate.ini file in your editor. Scroll to the GraphicTemplate section and find Pivot in the list. There you can see all the possible values that could be used. top left is also a typical value. We need to define an object that will make use of this graphic. This will be the actual entity that is used in the game:   [BackgroundObject] Graphic = BackgroundGraphic Position = (0, 0, 0)   The Graphic property is the section BackgroundGraphic that we defined earlier. Our object will use that graphic. The second property is the Position. In our world, this object will be created at (0, 0, 0). In Orx, the coordinates are (x, y, z). It may seem strange that Orx, being a 2D game engine has a Z axis. Actually Orx is 2.5D. It respects the Z axis for objects, and can use this for layering above or below other objects in the game. To make the object appear in our game, we will add a line of code in our source file to create it. In the Init() function of ufo.cpp, remove the default line: orxObject_CreateFromConfig("Object"); and replace it with: orxObject_CreateFromConfig("BackgroundObject"); Compile and run. The old spinning logo is now replaced with a nice tiled background object. Next, the ufo object is required. This is what the player will control. This will be covered in Part 2.
      3 comments

    GameDev Contractors

    1. I am a 3D Modeler and Texture Artist with several years of experience in various fields - games (mobile and PC), movies (The Expendables 3 and Survivor) and 3D printing. With a skillset formed by working with a variety of clients and on a large volume of different projects I am capable of delivering quality game-ready models and textures tailored to the specific requirements of the project. Additionally, I am very passionate about my craft and always strive to deliver a model that my clients will be happy with. I value all client input and communicate daily to achieve the desired result.

    2. "What is the normal rate for a good programmer? How much does a 3D model cost?"
      "What all do I need to make an entire level?"
      "How do I get my game on Steam? How do I make multiplayer servers? What is AWS/Gamesparks/Gamelift?"
      "Do I form a corporation before starting? Do I need a contract with this person to protect myself? Should I offer royalties?"
      "How long will X feature take to make? How do I make X feature work in my system?"
      "What is the pipeline for making a new character?"

      My current project, "Circuits and Shields" has been in development for nearly three long years now and along the way I've picked up about a million things that I'd do differently if I had the chance to start over. I firmly believe starting over from scratch that I could reach our current production level in about half the time and at half the cost.

      With the recent drop in bitcoin and my rapidly shrinking pockets, I'm looking to secure some extra funding for Circuits before we head into Kickstarter so I'm selling my services for upcoming projects. While soft skills are always a tough sell, I've built Circuits from the ground up as the guiding hand for every aspect of development. I've been in the unique position of serving as the sole link between every department, gaining familiarity with each step of the process. While I don't program or make the art myself, I've barked orders at these guys for years now. I will help you realize and understand things you never even thought about, whether that's in actual production pipelines or in the game design itself.

      I can't tell you how much it would have helped me to have someone more familiar with the process close to me where I could constantly just ask them questions as they came up. I can work hourly if you have a prepared list of questions or as a semi-permanent adviser to your project. I am currently offering my first couple consultations FOR FREE while I work out the kinks on how to best format this.

      Regardless of what state your project is in, whether it's just an idea and a forum post or you're halfway through development looking for a final push, I believe I can help you. Since it's going to be different for every project, I'm happy to sit down with you and work out a deal that's beneficial to both parties.


      Skillset(s): Director, Producer, and Game Designer 10+ years trying to make games 3+ years actually making a game
      Previous Work:
      Circuits and Shields: http://circuitsandshields.com

      Portfolio:
      http://chandlerthomlison.com

      Contact:
      Email: cthomlison@gmail.com
      Skype: cthomlison


      Additional Information: Skillset includes but not limited to: Project Management, Budgeting, Recruiting, Idea Refinement, Gameplay Design, Marketing, Animation, 3D Modeling, Visual Effects (VFX), Sound Effects (SFX), General Do's and Dont's, Website Design, Community Outreach, Engine Choice, Multiplayer Architecture, and Distribution.
      Thanks!
    3. Hi, I'm an industry professional with a decade of freelancing experience. I specialize in projects that seek further funding through the creation of a demo/prototype/POC and have a limited budget. I've worked on a number of highlight projects in the past and deliberately choose to focus on indie projects now. If you have a great idea but are lacking a developer that can put it together, look no further! I'll even help you pitch through crowdfunding or publishers! https://www.linkedin.com/in/michelmony/ Cheers!
    4. Freelance 3D Modeler and Texture Artist with several years of experience in the movie (The Expendables and Survivor), gaming and 3D Printing industries. Have worked on games that have been published on Steam. Available for freelance work - contact me at nickeydimchev3d@gmail.com Portfolio: nickeydimchev3d.myportfolio.com
    5. My name is Nick Torretta, I am a professional composer and founder of Elastic Music.  For almost a decade I have been writing music for all forms of media.  My work has been featured in internationally televised commercials, sitcoms, reality TV and films.  I have written custom scores for 7 indie game titles and I custom score projects for ad agencies and Boeing. I've just wrapped up a couple projects (including a full mod conversion endorsed by Blizzard) and I'm ready to take on more projects.  I've found video games to be the most satisfying and exciting projects! My rates are indie friendly, and I usually offer a hefty "first time" discount!  I also pride myself on flexibility, communication and working to achieve the game creator's vision instead of my own. You can view my portfolio at www.elasticmusicproductions.com.  I welcome your messages, questions or feedback and look forward to working with you to create something truly special.
  • Advertisement