Sign in to follow this  
BenS1

DX11 [DX11] Command Lists on a Single Threaded Renderer

Recommended Posts

One of the new major features of DirectX 11 is its support for multithreaded rendering using Immediate and Deferred Contexts, however it seems to me that the ability to create a Command List would potentially be beneficial even for a single threaded renderer. Is this correct?

Basically a Command List is a more efficient way of submitting a number of state and draw commands than calling each API separately, so even if you do all your rendering on one thread it would still seem more efficient to use Command Lists to perform repeat lists of actions.

If this is correct, then why isn't this mentioned more? Why are Deferred Contexts pretty much exclusively documented as a multi threading feature?

Thanks
ben

Share this post


Link to post
Share on other sites
I'm pretty sure I remembered reading somewhere that the runtime/drivers weren't optimized for this case. However I still think it would be worth trying out, especially as the drivers get better support for deferred command list generation.

Share this post


Link to post
Share on other sites
[quote name='MJP' timestamp='1321297420' post='4883879']
I'm pretty sure I remembered reading somewhere that the runtime/drivers weren't optimized for this case. However I still think it would be worth trying out, especially as the drivers get better support for deferred command list generation.
[/quote]
You are right, I just ran a test on 10,000 cubes, single threaded:
[list][*]Immediate: 200 fps[*]Deferred: 150 fps[/list]So Deferred for single threaded application is slower (at least on my machine). Note that checking the threading support for command list for my graphics card (AMD 6970M) is returning false, so I assume that It is not supported natively by the driver but "emulated" by DX11...

Share this post


Link to post
Share on other sites
I'm not sure if the AMD GPU's support it yet, but my GTX 470 on latest drivers says that it does. I'll have to check on my HD 6970 when I get home.

If your test is easily packagable, I would be happy to try it out on my machine to see how it performs.

Share this post


Link to post
Share on other sites
[quote name='xoofx' timestamp='1321370413' post='4884183']
[quote name='MJP' timestamp='1321297420' post='4883879']
I'm pretty sure I remembered reading somewhere that the runtime/drivers weren't optimized for this case. However I still think it would be worth trying out, especially as the drivers get better support for deferred command list generation.
[/quote]
You are right, I just ran a test on 100,000 cubes, single threaded:
[list][*]Immediate: 200 fps[*]Deferred: 150 fps[/list]So Deferred for single threaded application is slower (at least on my machine). Note that checking the threading support for command list for my graphics card (AMD 6970M) is returning false, so I assume that It is not supported natively by the driver but "emulated" by DX11...
[/quote]
I would caution against making blanket statements about the performance of single vs. deferred rendering - it totally depends on what your renderer does when it is submitting work to the API. For example, if your engine does lots of work in between the API calls that it makes, then it would likely be beneficial to utilize multiple threads which could reduce the total time needed to process a rendering path. On the other hand, if your submission routines are very bare bones and only submits API calls, there could be some benefit to compiling a long list of commands into a command list and then reusing it from frame to frame. This will depend on the hardware, the driver, your engine, and the application that is using your engine - you need to profile and see if it is worth it in a given context. You could even dynamically test it out on the first startup of your application and then choose the appropriate rendering method.

To that end - I would suggest setting up your rendering code to not know if it is using a deferred or immediate context so that you can delay the decision as long as possible as to which method you will use. That is just my own suggestion though - I have found it to be useful, but your mileage may vary!

Share this post


Link to post
Share on other sites
[quote name='xoofx' timestamp='1321370413' post='4884183']
[quote name='MJP' timestamp='1321297420' post='4883879']
I'm pretty sure I remembered reading somewhere that the runtime/drivers weren't optimized for this case. However I still think it would be worth trying out, especially as the drivers get better support for deferred command list generation.
[/quote]
You are right, I just ran a test on 100,000 cubes, single threaded:
[list][*]Immediate: 200 fps[*]Deferred: 150 fps[/list]So Deferred for single threaded application is slower (at least on my machine). Note that checking the threading support for command list for my graphics card (AMD 6970M) is returning false, so I assume that It is not supported natively by the driver but "emulated" by DX11...
[/quote]

Thanks all

xoofx, in your test do you re-create the command list every frame, or do you create the command list once at startup and then just re-execute it every frame?

I'm amazed that AMD cards don't support multithreading at the driver level yet!

I'd be interested in seeing the results on a NVidia card too.

Thanks
Ben

Share this post


Link to post
Share on other sites
If have released the executable test along some analysis about the results [url="http://code4k.blogspot.com/2011/11/direct3d11-multithreading-micro.html"]here[/url].

Of course, I agree with Jason.Z statements about taking carefully this kind of results, and the fact that a renderer can easily be built to switch transparently from a deferred context to an immediate context.

To respond to your initial question BenS1, It seems that hardware support for command list doesn't seems to change a lot (using a pre-prepared command list once and run it on an immediate context) compare to using the default Direct3D11 behavior.

Share this post


Link to post
Share on other sites
The problem with using a deferred context in a single threaded system is that you are doing more work per core in that situation; you have to prepare the CL, which takes some extra CPU overhead as the driver needs to do things and then you have to reaccess it again to send it to the card properly. Spread across multiple threads the cost-per-setup drops significantly and, if you batch them, your send arch will benifit greatly from code cache reuse (and depending on how it's stored maybe some data cache too).

Any speed gain also depends very much on what you are doing; in a test case at work which was setup to be heavily CPU bound, switching on mutli-threading CL support when NV's drivers were updated to fix it did give us a speed boost however it wasn't that much. I then spent some time playing with the test case and discovered that when we got over a certain threshold for data per CL we started spending more and more time in the buffer swapping function than anywhere else in the submission due to the driver having to do more. (I can't recall the specifics but from what I do recall drivers are limited memory wise or something like that... basically we blew a buffer right out).

However up until that point the MT CL rendering WAS making a significant difference with our CPU time usage and we had near perfect scaling [b]for the test case[/b].

The key point from all this; MT CL, if implimented by the drivers, will help but ONLY your CPU time.

I make a point of saying this because there is no 'hardware support' for CL; Command Lists are purely a CPU side thing, the difference is between letting the DX11 runtime cache the commands or letting the driver cache them and optimise them. (AMD still lacks support for this, although it is apprently 'coming soon')

(Also, as a side note, I do recall reading that 'create, store and reuse' isn't an optimal pattern for command lists. The runtime isn't really setup for this case and it assumes you'll be remaking them each frame, which is a fair assumption because as you can't chain them together to adjust each others state and most command lists will change each frame in a 'real world' situation it is best to test against this)

Share this post


Link to post
Share on other sites
[quote name='phantom' timestamp='1321785963' post='4885837']
I then spent some time playing with the test case and discovered that when we got over a certain threshold for data per CL we started spending more and more time in the buffer swapping function than anywhere else in the submission due to the driver having to do more. (I can't recall the specifics but from what I do recall drivers are limited memory wise or something like that... basically we blew a buffer right out).[/quote]
this could come from the Map/UnMap on command buffers, with an immediate context that is giving directly a kind of DMA to the GPU memory, but with a deferred context, it has to copy to a temporary buffer (which is probably on the RAM, but not sure it is on a shared memory on the GPU)...

[quote name='phantom' timestamp='1321785963' post='4885837']
I make a point of saying this because there is no 'hardware support' for CL; Command Lists are purely a CPU side thing, the difference is between letting the DX11 runtime cache the commands or letting the driver cache them and optimise them. (AMD still lacks support for this, although it is apprently 'coming soon')
[/quote]
Indeed, if it is natively supported by the driver, It can be optimized. A coworker found also on NVIDIA a performance boost when they introduced support for command list, though on AMD, It is already fine without the support from the driver... probably the command buffer on AMD is already layout in the same way DirectX11 command buffer is layout...

Share this post


Link to post
Share on other sites
[quote name='xoofx' timestamp='1321774033' post='4885817']
If have released the executable test along some analysis about the results [url="http://code4k.blogspot.com/2011/11/direct3d11-multithreading-micro.html"]here[/url].

Of course, I agree with Jason.Z statements about taking carefully this kind of results, and the fact that a renderer can easily be built to switch transparently from a deferred context to an immediate context.

To respond to your initial question BenS1, It seems that hardware support for command list doesn't seems to change a lot (using a pre-prepared command list once and run it on an immediate context) compare to using the default Direct3D11 behavior.
[/quote]

Wow, great article! Thanks.

Its a shame that the results show that command lists aren't really a faster way of repeating the same drawing commands over and over for a single threaded renderer.

I suspect they have the potential to be faster if the driver developers had sufficient motivation to optimise this area of their code, especially if they optimised the command list when you call FinishCommandList. I guess the problem is that the driver has no idea if you're only going to use the command list once and throw it away (In which case the act of optimising the command list may cost more than the potential gains), if if you're going to create the comand list once and execute it many times (In which case optimisng the list may be beneficial).

I guess we'd need a tweak to the API so that you can either pass in a boolean to FinishCommandList to tell the driver whether the command list should be optimised or not, or maybe there could be a separate explicit OptimizeCommandList method.

Thanks again for your detailed analysis.

Thanks
Ben

Share this post


Link to post
Share on other sites
[quote name='phantom' timestamp='1321785963' post='4885837']
The problem with using a deferred context in a single threaded system is that you are doing more work per core in that situation; you have to prepare the CL, which takes some extra CPU overhead as the driver needs to do things and then you have to reaccess it again to send it to the card properly. Spread across multiple threads the cost-per-setup drops significantly and, if you batch them, your send arch will benifit greatly from code cache reuse (and depending on how it's stored maybe some data cache too).

<snip>

(Also, as a side note, I do recall reading that 'create, store and reuse' isn't an optimal pattern for command lists. The runtime isn't really setup for this case and it assumes you'll be remaking them each frame, which is a fair assumption because as you can't chain them together to adjust each others state and most command lists will change each frame in a 'real world' situation it is best to test against this)
[/quote]

Thanks Phantom, but in my case I was thinking of creating the command list once and then executing it for each frame.

As I'm sure you know, a command list containing a constant buffer will only contain references (Or pointers) to the constant buffer and not the actual data containined int he buffer itself, so an app can still change the data in the constant buffer from frame to frame without having to create a new command list.

So for example I was thinking:
1. At startup create a command list (DrawTankCL) that draws a Tank at a position defined in a Contant Buffer ("TankCB")
2. Update TankCB.position on the CPU based on user input, physics etc
3. ExecuteCommandList(DrawTankCL)
4. Repeat from step 2.

As you can see the command list is created once and executed over and over, and yet the tanks posiiton is still dynamic.

Its a shame that this "create, store, reuse" pattern is not optimised int he drivers.

Anyway, at least now I know the answer so I code my game accordingly.

Thanks for your help
Ben

Share this post


Link to post
Share on other sites
There are two problems with your idea.

Firstly, you are being too fine grain with your CL for it to really be useful. There is a good PDF from GDC2011 which covers some of this (google: Jon Jansen DX11 Performance Gems, that should get you it). The main thing is that a CL has overhead, apprently a few dozen API calls so doing too little work in one is going to be a problem as it will just get swamped with overhead. Depending on your setup scenes or material groups are better fits for CL building and execution.

Secondly; you run the risk of suffering a stall at step 2. The driver buffers commands and the GPU should be working at the same time as you execute other work, so there is a chance that when you come to update in step 2 you could be waiting a 'significant' amount of time for the GPU to be done with your buffer and release it so that you can update it again. Discard/lock or other update [i]might[/i] avoid the problem, I've not tried it myself, but it still presents an issue.

Share this post


Link to post
Share on other sites
[quote name='xoofx' timestamp='1321790455' post='4885852']
Indeed, if it is natively supported by the driver, It can be optimized. A coworker found also on NVIDIA a performance boost when they introduced support for command list, though on AMD, It is already fine without the support from the driver... probably the command buffer on AMD is already layout in the same way DirectX11 command buffer is layout...
[/quote]

NV is a strange beast; before they had 'proper' support they kinda emulated it by spinning up a 'server' thread and serialising the CL creation via that. Amusingly if any of your active threads ended up on the same core as the server thread it tended to murder performance but by staying clear you could get a small improvement. Once the drivers came out which did the work correctly this problem went away.

In our test NV with proper support soundly beat AMD without it; this was a 470GTX vs 5870 on otherwise basically identical hardware (i7 CPUs, the NV one had a few hundred Mhz over the AMD one, but not enough for the performance delta seen). AMD's performance was more in line with the single thread version. However our test was a very heavy CPU bound one; 15,000 draw calls spread over 6 cores each one drawing a single flat shaded cube. Basically an API worse nightmare ;)

(Amusing side note; the same test/code on an X360 @ 720p could render at a solid 60fps with a solid 16.6ms frame time. That's command lists being generated each frame over 6 cores; shows just how much CPU overhead/performance loss you take when running on Windows :( )

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      627735
    • Total Posts
      2978854
  • Similar Content

    • By schneckerstein
      Hello,
      I manged so far to implement NVIDIA's NDF-Filtering at a basic level (the paper can be found here). Here is my code so far:
      //... // project the half vector on the normal (?) float3 hppWS = halfVector / dot(halfVector, geometricNormal) float2 hpp = float2(dot(hppWS, wTangent), dot(hppWS, wBitangent)); // compute the pixel footprint float2x2 dhduv = float2x2(ddx(hpp), ddy(hpp)); // compute the rectangular area of the pixel footprint float2 rectFp = min((abs(dhduv[0]) + abs(dhduv[1])) * 0.5, 0.3); // map the area to ggx roughness float2 covMx = rectFp * rectFp * 2; roughness = sqrt(roughness * roughness + covMx); //... Now I want combine this with LEAN mapping as state in Chapter 5.5 of the NDF paper.
      But I struggle to understand what theses sections actually means in Code: 
      I suppose the first-order moments are the B coefficent of the LEAN map, however things like
      float3 hppWS = halfVector / dot(halfVector, float3(lean_B, 0)); doesn't bring up anything usefull.
      Next theres:
      This simply means:
      // M and B are the coefficents from the LEAN map float2x2 sigma_mat = float2x2( M.x - B.x * B.x, M.z - B.x * B.y, M.z - B.x * B.y, M.y - B.y * B.y); does it?
      Finally:
      This is the part confuses me the most: how am I suppose to convolute two matrices? I know the concept of convolution in terms of functions, not matrices. Should I multiple them? That didn't make any usefully output.
      I hope someone can help with this maybe too specific question, I'm really despaired to make this work and i've spend too many hours of trial & error...
      Cheers,
      Julian
    • By Baemz
      Hello,
      I've been working on some culling-techniques for a project. We've built our own engine so pretty much everything is built from scratch. I've set up a frustum with the following code, assuming that the FOV is 90 degrees.
      float angle = CU::ToRadians(45.f); Plane<float> nearPlane(Vector3<float>(0, 0, aNear), Vector3<float>(0, 0, -1)); Plane<float> farPlane(Vector3<float>(0, 0, aFar), Vector3<float>(0, 0, 1)); Plane<float> right(Vector3<float>(0, 0, 0), Vector3<float>(angle, 0, -angle)); Plane<float> left(Vector3<float>(0, 0, 0), Vector3<float>(-angle, 0, -angle)); Plane<float> up(Vector3<float>(0, 0, 0), Vector3<float>(0, angle, -angle)); Plane<float> down(Vector3<float>(0, 0, 0), Vector3<float>(0, -angle, -angle)); myVolume.AddPlane(nearPlane); myVolume.AddPlane(farPlane); myVolume.AddPlane(right); myVolume.AddPlane(left); myVolume.AddPlane(up); myVolume.AddPlane(down); When checking the intersections I am using a BoundingSphere of my models, which is calculated by taking the average position of all vertices and then choosing the furthest distance to a vertex for radius. The actual intersection test looks like this, where the "myFrustum90" is the actual frustum described above.
      The orientationInverse is the viewMatrix in this case.
      bool CFrustum::Intersects(const SFrustumCollider& aCollider) { CU::Vector4<float> position = CU::Vector4<float>(aCollider.myCenter.x, aCollider.myCenter.y, aCollider.myCenter.z, 1.f) * myOrientationInverse; return myFrustum90.Inside({ position.x, position.y, position.z }, aCollider.myRadius); } The Inside() function looks like this.
      template <typename T> bool PlaneVolume<T>::Inside(Vector3<T> aPosition, T aRadius) const { for (unsigned short i = 0; i < myPlaneList.size(); ++i) { if (myPlaneList[i].ClassifySpherePlane(aPosition, aRadius) > 0) { return false; } } return true; } And this is the ClassifySpherePlane() function. (The plane is defined as a Vector4 called myABCD, where ABC is the normal)
      template <typename T> inline int Plane<T>::ClassifySpherePlane(Vector3<T> aSpherePosition, float aSphereRadius) const { float distance = (aSpherePosition.Dot(myNormal)) - myABCD.w; // completely on the front side if (distance >= aSphereRadius) { return 1; } // completely on the backside (aka "inside") if (distance <= -aSphereRadius) { return -1; } //sphere intersects the plane return 0; }  
      Please bare in mind that this code is not optimized nor well-written by any means. I am just looking to get it working.
      The result of this culling is that the models seem to be culled a bit "too early", so that the culling is visible and the models pops away.
      How do I get the culling to work properly?
      I have tried different techniques but haven't gotten any of them to work.
      If you need more code or explanations feel free to ask for it.

      Thanks.
       
    • By evelyn4you
      hi,
      i have read very much about the binding of a constantbuffer to a shader but something is still unclear to me.
      e.g. when performing :   vertexshader.setConstantbuffer ( buffer,  slot )
       is the buffer bound
      a.  to the VertexShaderStage
      or
      b. to the VertexShader that is currently set as the active VertexShader
      Is it possible to bind a constantBuffer to a VertexShader e.g. VS_A and keep this binding even after the active VertexShader has changed ?
      I mean i want to bind constantbuffer_A  to VS_A, an Constantbuffer_B to VS_B  and  only use updateSubresource without using setConstantBuffer command every time.

      Look at this example:
      SetVertexShader ( VS_A )
      updateSubresource(buffer_A)
      vertexshader.setConstantbuffer ( buffer_A,  slot_A )
      perform drawcall       ( buffer_A is used )

      SetVertexShader ( VS_B )
      updateSubresource(buffer_B)
      vertexshader.setConstantbuffer ( buffer_B,  slot_A )
      perform drawcall   ( buffer_B is used )
      SetVertexShader ( VS_A )
      perform drawcall   (now which buffer is used ??? )
       
      I ask this question because i have made a custom render engine an want to optimize to
      the minimum  updateSubresource, and setConstantbuffer  calls
       
       
       
       
       
    • By noodleBowl
      I got a quick question about buffers when it comes to DirectX 11. If I bind a buffer using a command like:
      IASetVertexBuffers IASetIndexBuffer VSSetConstantBuffers PSSetConstantBuffers  and then later on I update that bound buffer's data using commands like Map/Unmap or any of the other update commands.
      Do I need to rebind the buffer again in order for my update to take effect? If I dont rebind is that really bad as in I get a performance hit? My thought process behind this is that if the buffer is already bound why do I need to rebind it? I'm using that same buffer it is just different data
       
    • By Rockmover
      I am really stuck with something that should be very simple in DirectX 11. 
      1. I can draw lines using a PC (position, colored) vertices and a simple shader just fine.
      2. I can draw 3D triangles using PCN (position, colored, normal) vertices just fine (even transparency and SpecularBlinnPhong shaders).
       
      However, if I'm using my 3D shader, and I want to draw my PC lines in the same scene how can I do that?
       
      If I change my lines to PCN and pass them to the 3D shader with my triangles, then the lighting screws them all up.  I only want the lighting for the 3D triangles, but no SpecularBlinnPhong/Lighting for the lines (just PC). 
      I am sure this is because if I change the lines to PNC there is not really a correct "normal" for the lines.  
      I assume I somehow need to draw the 3D triangles using one shader, and then "switch" to another shader and draw the lines?  But I have no clue how to use two different shaders in the same scene.  And then are the lines just drawn on top of the triangles, or vice versa (maybe draw order dependent)?  
      I must be missing something really basic, so if anyone can just point me in the right direction (or link to an example showing the implementation of multiple shaders) that would be REALLY appreciated.
       
      I'm also more than happy to post my simple test code if that helps as well!
       
      THANKS SO MUCH IN ADVANCE!!!
  • Popular Now