• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
DevLiquidKnight

Most Important Mathematics in Advanced AI/Robotics

11 posts in this topic

What would constitute the very most important mathematics used in AI and Robotics? Not just game AI, all AI, I realize the obvious answer here is "everything" but I am looking for something more specific. Like, I can see probability being used in machine learning, linear algebra is a given. Anything else?

0

Share this post


Link to post
Share on other sites
There is something called Control Theory that deals with many of the problems involved, especially in robotics. It does involve a lot of statistics, for sure, but some calculus is also required.

Nobody knows enough statistics.

Hmmm... Not to brag, but I think I know enough statistics, at least for what I have needed so far. I work with a couple of people that know a lot more statistics than I do, but I rarely feel the need to ask for their help.
0

Share this post


Link to post
Share on other sites

There is something called Control Theory that deals with many of the problems involved, especially in robotics. It does involve a lot of statistics, for sure, but some calculus is also required.

Nobody knows enough statistics.

Hmmm... Not to brag, but I think I know enough statistics, at least for what I have needed so far. I work with a couple of people that know a lot more statistics than I do, but I rarely feel the need to ask for their help.


Constructing a basic implementation of an AI may not require much stats, sure; in fact, for most game AI, you can implement everything with a little linear algebra and some simple formal logic.

If you want to get good results, though, you need stats: analyzing when and why things happen, how they correlate, and so forth. Stats are also crucial for building good models if you're trying to approximate an existing behavior set.

Plus, if you have to work with a game designer in any capacity whatsoever, knowing how to use Excel will make you a vastly more effective teammate.
0

Share this post


Link to post
Share on other sites
I think we are not understanding each other. You said that nobody knows enough statistics, and I said that I think I do. It's not like I think statistics are not useful, but I studied them in college, I use them every day at my job and I think I know enough.

Gathering evidence, understanding correlations, testing hypotheses, evaluating with what certainty I know that a change to a complex system will have the desired results, etc. is what I do for a living.

My point is that you *can* learn enough about these things.
0

Share this post


Link to post
Share on other sites

Short post:

 

Convex optimization.

 

In reality, there are about four kinds of problems in the world that you can solve, and everything consists of reducing other problems to them:

1.) Linear system of equations

2.) Eigenvector/eigenvalue problems

3.) Convex optimization problems (which really includes 1, and mostly also includes 2)

4.) Low-dimensional dynamic programming

 

I exaggerate slightly, but not by much.

 

 

Long post:

 

To follow up on alvaro's comment about control theory:

 

There are a couple of core ideas that a lot of different people study, from slightly different angles, and with slightly different tools.  These people include,

- control theoreticians

- roboticists

- classical AI (planning) people,

- machine learning researchers, and

- operations researchers.

 

The differences between these groups are as much social, cultural, and historical, as they are technical.

 

In my own view, there are a small number of core problems that they all aim to solve.  The two that really stand out are,

 

1.) "Markov decision problems" -- a term that I use broadly to include both discrete time and state spaces (what people normally mean when they say "Markov Decision Problem" (MDP)), and with continuous time and state spaces (which people normally call "optimal control").  Additionally, problems here may or may not contain randomness, and each of these variants have very slightly different corresponding theories, but the underlying ideas are essentially the same.  Do you want to find the shortest path through a maze?  Or how to steer a fighter jet to perform a barrel roll?  Or how to move a robot arm around an obstacle?  These are MDP/optimal-control problems.

 

2.) State estimation problems ("filtering," "smoothing," and trajectory estimation).  Whereas in my last bullet point the goal was to get a system to a particular state, here the goal is to figure out what state a system is in.  Depending again on whether you are interested in discrete- or continuous- time- or state-spaces, depending on what noise model you assume, and depending on which of these problems you want to solve (filtering, smoothing, trajectory estimation) you end up with e.g. the "forward algorithm" for hidden Markov models, the Kalman filter for linear systems, or the Viterbi algorithm, among other closely-related algorithms.

 

There are generalizations and combinations of these ideas in all sorts of directions.

E.g., an operations researcher might say that Markov decision problems
are "just" optimization problems with a particular structure and go off
to look at Lagrange multipliers and duality gaps.  He might also point
out all the problems that don't most naturally have this structure.  Likewise, some
machine learning people might say that the idea of different "states"
at different "times," again, "just" describes a particular structure of
Bayes net.  You can also combine #1 and #2 to arrive at POMDPs, which
are the most general (single-player) discrete--time-and-state problem.  But despite all this, I think the two problems I listed above capture the essence of most things.

 

As for "statistics:" I do not think that there is a single unified intellectual edifice with this name.  The only thing that makes any sense to me philosophically is personalist Bayesian statistics, and even that I'm still figuring out.

2

Share this post


Link to post
Share on other sites

.......Why has nobody included basic calculus...?

There is something called Control Theory that deals with many of the problems involved, especially in robotics. It does involve a lot of statistics, for sure, but some calculus is also required.

0

Share this post


Link to post
Share on other sites

Robotics probably means optical/sensory interpretation would be part of the maths.

 

Im not sure of the names of the areas of mathematics for the different cognitive/perception processing.

 

Would include mass data algorithms, filtering, pattern feature conversion and matching.

 

Triangulation for 3D vision...

 

-----

 

Isnt Fuzzy Mathematics part of another more general classificaltion ?

Edited by wodinoneeye
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0