Sign in to follow this  
ic0de

OpenGL Rendering a GUI efficiently

Recommended Posts

ic0de    1012

I did some profiling the other day and I found that drawing my gui over my 3d scene increased my frametime by up to 30%. I'm using GWEN for my gui but it allows you to write a custom renderer which I did. I used the same terrible techniques as the sample renderer but was able to squeeze out a little more performance by better integrating it into my engine which removed a few OpenGL calls. The problem with the renderer is that the way it works is that I basically get to derive a renderer class and rewrite a DrawTexturedRect function and that is the only way I can get geometry. In the sample implementation (and mine) It places two triangles to form a quad in a buffer on the cpu side when everything is finished drawing or the buffer is full it calls a flush function which uploads the buffer to the gpu and draws it, then the buffer is emptied. The problem is that this happens every frame and I have no way of knowing whether the geometry has actually changed between frames so I have no choice but to do everything all over again. So I was thinking of ways to change this awful setup while only being allowed to use DrawTexturedRect and I thought about instancing a single 1x1 quad (everthing is a quad with the same texcoords) and then scaling and translating it in the vertex shader. But unfortunately instanced rendering is only core in OpenGL 3.1+ and my minimum is GL 2.1 support where it is available as an extension (but probably not on intel cards). So my question boils down to is it faster to draw individual quads (one draw call per quad) that are already in the gpu memory or to use the terrible buffering solution? any other general GUI drawing advice would be appreciated as well. 

Share this post


Link to post
Share on other sites
froop    642

Gwen apparently supports caching (take a look at the ICacheToTexture interface in the base renderer). Unfortunately I haven't tried to implement it yet so I can't say anything about its usefulness.

Share this post


Link to post
Share on other sites
ic0de    1012

Gwen apparently supports caching (take a look at the ICacheToTexture interface in the base renderer). Unfortunately I haven't tried to implement it yet so I can't say anything about its usefulness.

 

Hmm thats very interesting. Depending on how it works that may be ideal. Unfortunately none of the samples seem to use it.

Edited by ic0de

Share this post


Link to post
Share on other sites
LorenzoGatti    4442
 

It places two triangles to form a quad in a buffer on the cpu side when everything is finished drawing or the buffer is full it calls a flush function which uploads the buffer to the gpu and draws it, then the buffer is emptied.

 
This waiting (draw other things, then draw GUI) might waste some parallelism.
Do you need normal 3D scene drawing while there is a dialog in front of it? A freeze frame (copy last frame to a texture, then draw it as a full-screen quad) should be cheaper.

Share this post


Link to post
Share on other sites
ic0de    1012

This waiting (draw other things, then draw GUI) might waste some parallelism.

Do you need normal 3D scene drawing while there is a dialog in front of it? A freeze frame (copy last frame to a texture, then draw it as a full-screen quad) should be cheaper.

 

Unfortunately the 3D scene must remain dynamic while gui elements are being displayed.

Share this post


Link to post
Share on other sites
clashie    632

I dunno if it's optimal how I have my stuff set up, but I have a simple sprite batching class that I use to draw quads with. I don't really do anything special at all.

 

SpriteBatch manages the state, etc. It's really dead simple and really doesn't do that much work internally. Just tracking a few things, starting a new batch, finally issuing the draw call, etc. I pre-fill the index buffer and cap how large batches can get. Adding a sprite to the batch just needs a Rect for the position and another for the texture coordinates.

 

A batch is a simple struct like this

struct Batch
{
	Vertex2D*	verts;
	Texture*	texture;
	u32		numSprites;
	u32		numVerts;
	u32		numIndicies;
}; 

Then keep a vector of them. Batches hang around until you explicitly purge them, so once you add a bunch of quads, you don't need to re-add them and the only thing that needs to happen is the draw call (and prior memcpy() to push whatever batch verts to the underlying vertex buffer).

 

It's not fancy or super robust, but I don't see why I couldn't draw an entire UI with just one or two draw calls. Drawing thousands of textured quads costs practically nothing, and my framerate is still well into the thousands. What's GWEN doing that's taking so long?

Edited by clashie

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By Kjell Andersson
      I'm trying to get some legacy OpenGL code to run with a shader pipeline,
      The legacy code uses glVertexPointer(), glColorPointer(), glNormalPointer() and glTexCoordPointer() to supply the vertex information.
      I know that it should be using setVertexAttribPointer() etc to clearly define the layout but that is not an option right now since the legacy code can't be modified to that extent.
      I've got a version 330 vertex shader to somewhat work:
      #version 330 uniform mat4 osg_ModelViewProjectionMatrix; uniform mat4 osg_ModelViewMatrix; layout(location = 0) in vec4 Vertex; layout(location = 2) in vec4 Normal; // Velocity layout(location = 3) in vec3 TexCoord; // TODO: is this the right layout location? out VertexData { vec4 color; vec3 velocity; float size; } VertexOut; void main(void) { vec4 p0 = Vertex; vec4 p1 = Vertex + vec4(Normal.x, Normal.y, Normal.z, 0.0f); vec3 velocity = (osg_ModelViewProjectionMatrix * p1 - osg_ModelViewProjectionMatrix * p0).xyz; VertexOut.velocity = velocity; VertexOut.size = TexCoord.y; gl_Position = osg_ModelViewMatrix * Vertex; } What works is the Vertex and Normal information that the legacy C++ OpenGL code seem to provide in layout location 0 and 2. This is fine.
      What I'm not getting to work is the TexCoord information that is supplied by a glTexCoordPointer() call in C++.
      Question:
      What layout location is the old standard pipeline using for glTexCoordPointer()? Or is this undefined?
       
      Side note: I'm trying to get an OpenSceneGraph 3.4.0 particle system to use custom vertex, geometry and fragment shaders for rendering the particles.
    • By markshaw001
      Hi i am new to this forum  i wanted to ask for help from all of you i want to generate real time terrain using a 32 bit heightmap i am good at c++ and have started learning Opengl as i am very interested in making landscapes in opengl i have looked around the internet for help about this topic but i am not getting the hang of the concepts and what they are doing can some here suggests me some good resources for making terrain engine please for example like tutorials,books etc so that i can understand the whole concept of terrain generation.
       
    • By KarimIO
      Hey guys. I'm trying to get my application to work on my Nvidia GTX 970 desktop. It currently works on my Intel HD 3000 laptop, but on the desktop, every bind textures specifically from framebuffers, I get half a second of lag. This is done 4 times as I have three RGBA textures and one depth 32F buffer. I tried to use debugging software for the first time - RenderDoc only shows SwapBuffers() and no OGL calls, while Nvidia Nsight crashes upon execution, so neither are helpful. Without binding it runs regularly. This does not happen with non-framebuffer binds.
      GLFramebuffer::GLFramebuffer(FramebufferCreateInfo createInfo) { glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); textures = new GLuint[createInfo.numColorTargets]; glGenTextures(createInfo.numColorTargets, textures); GLenum *DrawBuffers = new GLenum[createInfo.numColorTargets]; for (uint32_t i = 0; i < createInfo.numColorTargets; i++) { glBindTexture(GL_TEXTURE_2D, textures[i]); GLint internalFormat; GLenum format; TranslateFormats(createInfo.colorFormats[i], format, internalFormat); // returns GL_RGBA and GL_RGBA glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, createInfo.width, createInfo.height, 0, format, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i; glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, textures[i], 0); } if (createInfo.depthFormat != FORMAT_DEPTH_NONE) { GLenum depthFormat; switch (createInfo.depthFormat) { case FORMAT_DEPTH_16: depthFormat = GL_DEPTH_COMPONENT16; break; case FORMAT_DEPTH_24: depthFormat = GL_DEPTH_COMPONENT24; break; case FORMAT_DEPTH_32: depthFormat = GL_DEPTH_COMPONENT32; break; case FORMAT_DEPTH_24_STENCIL_8: depthFormat = GL_DEPTH24_STENCIL8; break; case FORMAT_DEPTH_32_STENCIL_8: depthFormat = GL_DEPTH32F_STENCIL8; break; } glGenTextures(1, &depthrenderbuffer); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); glTexImage2D(GL_TEXTURE_2D, 0, depthFormat, createInfo.width, createInfo.height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthrenderbuffer, 0); } if (createInfo.numColorTargets > 0) glDrawBuffers(createInfo.numColorTargets, DrawBuffers); else glDrawBuffer(GL_NONE); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "Framebuffer Incomplete\n"; glBindFramebuffer(GL_FRAMEBUFFER, 0); width = createInfo.width; height = createInfo.height; } // ... // FBO Creation FramebufferCreateInfo gbufferCI; gbufferCI.colorFormats = gbufferCFs.data(); gbufferCI.depthFormat = FORMAT_DEPTH_32; gbufferCI.numColorTargets = gbufferCFs.size(); gbufferCI.width = engine.settings.resolutionX; gbufferCI.height = engine.settings.resolutionY; gbufferCI.renderPass = nullptr; gbuffer = graphicsWrapper->CreateFramebuffer(gbufferCI); // Bind glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); // Draw here... // Bind to textures glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textures[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textures[1]); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, textures[2]); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); Here is an extract of my code. I can't think of anything else to include. I've really been butting my head into a wall trying to think of a reason but I can think of none and all my research yields nothing. Thanks in advance!
    • By Adrianensis
      Hi everyone, I've shared my 2D Game Engine source code. It's the result of 4 years working on it (and I still continue improving features ) and I want to share with the community. You can see some videos on youtube and some demo gifs on my twitter account.
      This Engine has been developed as End-of-Degree Project and it is coded in Javascript, WebGL and GLSL. The engine is written from scratch.
      This is not a professional engine but it's for learning purposes, so anyone can review the code an learn basis about graphics, physics or game engine architecture. Source code on this GitHub repository.
      I'm available for a good conversation about Game Engine / Graphics Programming
    • By C0dR
      I would like to introduce the first version of my physically based camera rendering library, written in C++, called PhysiCam.
      Physicam is an open source OpenGL C++ library, which provides physically based camera rendering and parameters. It is based on OpenGL and designed to be used as either static library or dynamic library and can be integrated in existing applications.
       
      The following features are implemented:
      Physically based sensor and focal length calculation Autoexposure Manual exposure Lense distortion Bloom (influenced by ISO, Shutter Speed, Sensor type etc.) Bokeh (influenced by Aperture, Sensor type and focal length) Tonemapping  
      You can find the repository at https://github.com/0x2A/physicam
       
      I would be happy about feedback, suggestions or contributions.

  • Popular Now