Sign in to follow this  

DX11 Adapting Luminance Map - No adaptation according to my eye

This topic is 1246 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi guys. wink.png

 

so I'm currently having a minor issue here. I generate my luminance map, then attempt to adapt it and then use it for other purposes, such as the bloom pass. But the problem is that theres no visible adaptation for some reason. Someone might find the shader code familiar, well thats because I based it on a sample from MJP (Thanks btw. Great samples you have there.)

 

Logic in the high level render when rendering & adapting the luminance map, DX11 is my own small wrapper, it should work as intended:

void CE_NAMESPACE::CEPostLuminance::Render(DX11 *pD3D11, float dTime, DX11Resource *p, DX11RenderTarget *pOut)
{
	// Set DTIME
	Buffer.fTimeDelta = dTime;

	// Map Data
	pD3D11->BufferConstantMap(m_vBuffers[0]->p, &Buffer);

	// Upload the data
	SetData(pD3D11);

	// Calculate new luminance
	{
		pD3D11->RTVSet(&m_pLum->pRTV, 1, false);

		// Bind Shader
		ApplyPost(pD3D11, &m_pPasses[0]);

		// Upload Texture
		pD3D11->Bind(p, 0);

		// Render the quad
		pD3D11->Render(3, 0);

		// Unbind
		pD3D11->Unbind(PS, 0);
	}

	// Adapt it, no effect
	{
		pD3D11->RTVSet(&m_pTemp->pRTV, 1, false);

		// Bind Shader
		ApplyPost(pD3D11, &m_pPasses[1]);

		// Upload Texture
		pD3D11->Bind(m_pLumLast, 1);

		// Upload Texture
		pD3D11->Bind(m_pLum, 2);

		// Render the quad
		pD3D11->Render(3, 0);
	}

	// Swappy Times!
	m_pLumLast = m_pLum;
	m_pLum = m_pTemp;
	m_pTemp = m_pLumLast;

        .... Some more unrelated stuff

The actual shader code for the adaptation: ( Tau: 1.25f )

 
 
...
Texture2D<float> lum_old : register(t1);
Texture2D<float> lum : register(t2);

...

float AdaptLuminancePS(VS_Output input) : SV_Target
{
	float lastLum = exp(lum_old.Sample(ss, input.Tex));
	float currentLum = lum.Sample(ss, input.Tex);

	// Adapt the luminance using Pattanaik's technique    
	float adaptedLum = lastLum + (currentLum - lastLum) * (1 - exp(-TimeDelta * Tau));

	return log(adaptedLum);
}

The mistake is most likely obvious but theres no change in the luminance map according to my eyes.

 

Thank you for your time. I appreciate it.

-MIGI0027

Share this post


Link to post
Share on other sites


float adaptedLum = lastLum + (currentLum - lastLum) * (1 - exp(-TimeDelta * Tau));

 

Probably this line. Just quessing, but thats what caused problems at my end more than once. try to replace the exp()-statement with a constant, like

 


float adaptedLum = lastLum + (currentLum - lastLum) * 0.75f;

 

and see if it works.

Share this post


Link to post
Share on other sites

Visualize the content of your render-targets then. How does the current/last/blended luminance looks like?Try to see if there is any change here at all first, maybe the luminance isn't even calculated properly to begin with.

Share this post


Link to post
Share on other sites

Hi, can you show how are you computing luminance ?

and also your bloom pass ?

 

Log and exp should be used during generation of luminance, so instead of :

float lastLum = exp(lum_old.Sample(ss, input.Tex));
float currentLum = lum.Sample(ss, input.Tex);

 // Adapt the luminance using Pattanaik's technique 
 float adaptedLum = lastLum + (currentLum - lastLum) * (1 - exp(-TimeDelta * Tau));

    return log(adaptedLum);

you should have :

float lastLum = lum_old.Sample(ss, input.Tex);
float currentLum = exp(lum.Sample(ss, input.Tex));

// Adapt the luminance using Pattanaik's technique 
 float adaptedLum = lastLum + (currentLum - lastLum) * (1 - exp(-TimeDelta * Tau));

 return adaptedLum;

and use Log during generation of luminance.

 

Or first you can try you luminance without any log/exp and see if it works.

Edited by joeblack

Share this post


Link to post
Share on other sites

Thanks for all the valuable help, the problem lied deeper due to a flaw in my logic and naive assumptions.

 

The problem was the swapping part. Im not sure when or how or why I did it like that.

 

WRONG: (I must have been under some sort of hallucinating drug blink.png )

// Adapt it, no effect
	{
		pD3D11->RTVSet(&m_pTemp->pRTV, 1, false);

		// Bind Shader
		ApplyPost(pD3D11, &m_pPasses[1]);

		// Upload Texture
		pD3D11->Bind(m_pLumLast, 1);

		// Upload Texture
		pD3D11->Bind(m_pLum, 2);

		// Render the quad
		pD3D11->Render(3, 0);
	}

	// Swappy Times! Like wtf is this!?
	m_pLumLast = m_pLum;
	m_pLum = m_pTemp;
	m_pTemp = m_pLumLast;

The solution was two have an array called m_pLumLast of 2 elements, then casually swap them after usage:

	// Blend it
	{
		pD3D11->RTVSet(&m_ppLumLast[1]->pRTV, 1, false);

		// Bind Shader
		ApplyPost(pD3D11, &m_pPasses[1]);

		// Upload Texture
		pD3D11->Bind(m_ppLumLast[0], 1);

		// Upload Texture
		pD3D11->Bind(m_pLum, 2);

		// Render the quad
		pD3D11->Render(3, 0);

		// Unbind
		pD3D11->Unbind(PS, 0);
	}

	// Swap Old Luminance Maps
	DX11RenderTarget *pRCPY = m_ppLumLast[0];
	m_ppLumLast[0] = m_ppLumLast[1];
	m_ppLumLast[1] = pRCPY;

Ohh, and for anyone wondering, its a good idea to clear the last luminance textures after youve created them to a value, might be 0.

 

And thanks joeblack + juliean. But the problem was on my side, I apologize for the trouble. But thanks for the awesome help.

 

Perhaps someone will find this valuable at some point.

 

EDIT: Sorry for the long delay, but its hard finding time to test...

 

-MIGI0027

Edited by Migi0027

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Similar Content

    • By mister345
      Hi, can somebody please tell me in clear simple steps how to debug and step through an hlsl shader file?
      I already did Debug > Start Graphics Debugging > then captured some frames from Visual Studio and
      double clicked on the frame to open it, but no idea where to go from there.
       
      I've been searching for hours and there's no information on this, not even on the Microsoft Website!
      They say "open the  Graphics Pixel History window" but there is no such window!
      Then they say, in the "Pipeline Stages choose Start Debugging"  but the Start Debugging option is nowhere to be found in the whole interface.
      Also, how do I even open the hlsl file that I want to set a break point in from inside the Graphics Debugger?
       
      All I want to do is set a break point in a specific hlsl file, step thru it, and see the data, but this is so unbelievably complicated
      and Microsoft's instructions are horrible! Somebody please, please help.
       
       
       

    • By mister345
      I finally ported Rastertek's tutorial # 42 on soft shadows and blur shading. This tutorial has a ton of really useful effects and there's no working version anywhere online.
      Unfortunately it just draws a black screen. Not sure what's causing it. I'm guessing the camera or ortho matrix transforms are wrong, light directions, or maybe texture resources not being properly initialized.  I didnt change any of the variables though, only upgraded all types and functions DirectX3DVector3 to XMFLOAT3, and used DirectXTK for texture loading. If anyone is willing to take a look at what might be causing the black screen, maybe something pops out to you, let me know, thanks.
      https://github.com/mister51213/DX11Port_SoftShadows
       
      Also, for reference, here's tutorial #40 which has normal shadows but no blur, which I also ported, and it works perfectly.
      https://github.com/mister51213/DX11Port_ShadowMapping
       
    • By xhcao
      Is Direct3D 11 an api function like glMemoryBarrier in OpenGL? For example, if binds a texture to compute shader, compute shader writes some values to texture, then dispatchCompute, after that, read texture content to CPU side. I know, In OpenGL, we could call glMemoryBarrier before reading to assure that texture all content has been updated by compute shader.
      How to handle incoherent memory access in Direct3D 11? Thank you.
    • By _Engine_
      Atum engine is a newcomer in a row of game engines. Most game engines focus on render
      techniques in features list. The main task of Atum is to deliver the best toolset; that’s why,
      as I hope, Atum will be a good light weighted alternative to Unity for indie games. Atum already
      has fully workable editor that has an ability to play test edited scene. All system code has
      simple ideas behind them and focuses on easy to use functionality. That’s why code is minimized
      as much as possible.
      Currently the engine consists from:
      - Scene Editor with ability to play test edited scene;
      - Powerful system for binding properties into the editor;
      - Render system based on DX11 but created as multi API; so, adding support of another GAPI
        is planned;
      - Controls system based on aliases;
      - Font system based on stb_truetype.h;
      - Support of PhysX 3.0, there are samples in repo that use physics;
      - Network code which allows to create server/clinet; there is some code in repo which allows
        to create a simple network game
      I plan to use this engine in multiplayer game - so, I definitely will evolve the engine. Also
      I plan to add support for mobile devices. And of course, the main focus is to create a toolset
      that will ease games creation.
      Link to repo on source code is - https://github.com/ENgineE777/Atum
      Video of work process in track based editor can be at follow link: 
       
       

    • By mister345
      I made a spotlight that
      1. Projects 3d models onto a render target from each light POV to simulate shadows
      2. Cuts a circle out of the square of light that has been projected onto the render target
      as a result of the light frustum, then only lights up the pixels inside that circle 
      (except the shadowed parts of course), so you dont see the square edges of the projected frustum.
       
      After doing an if check to see if the dot product of light direction and light to vertex vector is greater than .95
      to get my initial cutoff, I then multiply the light intensity value inside the resulting circle by the same dot product value,
      which should range between .95 and 1.0.
       
      This should give the light inside that circle a falloff from 100% lit to 0% lit toward the edge of the circle. However,
      there is no falloff. It's just all equally lit inside the circle. Why on earth, I have no idea. If someone could take a gander
      and let me know, please help, thank you so much.
      float CalculateSpotLightIntensity(     float3 LightPos_VertexSpace,      float3 LightDirection_WS,      float3 SurfaceNormal_WS) {     //float3 lightToVertex = normalize(SurfacePosition - LightPos_VertexSpace);     float3 lightToVertex_WS = -LightPos_VertexSpace;          float dotProduct = saturate(dot(normalize(lightToVertex_WS), normalize(LightDirection_WS)));     // METALLIC EFFECT (deactivate for now)     float metalEffect = saturate(dot(SurfaceNormal_WS, normalize(LightPos_VertexSpace)));     if(dotProduct > .95 /*&& metalEffect > .55*/)     {         return saturate(dot(SurfaceNormal_WS, normalize(LightPos_VertexSpace)));         //return saturate(dot(SurfaceNormal_WS, normalize(LightPos_VertexSpace))) * dotProduct;         //return dotProduct;     }     else     {         return 0;     } } float4 LightPixelShader(PixelInputType input) : SV_TARGET {     float2 projectTexCoord;     float depthValue;     float lightDepthValue;     float4 textureColor;     // Set the bias value for fixing the floating point precision issues.     float bias = 0.001f;     // Set the default output color to the ambient light value for all pixels.     float4 lightColor = cb_ambientColor;     /////////////////// NORMAL MAPPING //////////////////     float4 bumpMap = shaderTextures[4].Sample(SampleType, input.tex);     // Expand the range of the normal value from (0, +1) to (-1, +1).     bumpMap = (bumpMap * 2.0f) - 1.0f;     // Change the COORDINATE BASIS of the normal into the space represented by basis vectors tangent, binormal, and normal!     float3 bumpNormal = normalize((bumpMap.x * input.tangent) + (bumpMap.y * input.binormal) + (bumpMap.z * input.normal));     //////////////// LIGHT LOOP ////////////////     for(int i = 0; i < NUM_LIGHTS; ++i)     {     // Calculate the projected texture coordinates.     projectTexCoord.x =  input.vertex_ProjLightSpace[i].x / input.vertex_ProjLightSpace[i].w / 2.0f + 0.5f;     projectTexCoord.y = -input.vertex_ProjLightSpace[i].y / input.vertex_ProjLightSpace[i].w / 2.0f + 0.5f;     if((saturate(projectTexCoord.x) == projectTexCoord.x) && (saturate(projectTexCoord.y) == projectTexCoord.y))     {         // Sample the shadow map depth value from the depth texture using the sampler at the projected texture coordinate location.         depthValue = shaderTextures[6 + i].Sample(SampleTypeClamp, projectTexCoord).r;         // Calculate the depth of the light.         lightDepthValue = input.vertex_ProjLightSpace[i].z / input.vertex_ProjLightSpace[i].w;         // Subtract the bias from the lightDepthValue.         lightDepthValue = lightDepthValue - bias;         float lightVisibility = shaderTextures[6 + i].SampleCmp(SampleTypeComp, projectTexCoord, lightDepthValue );         // Compare the depth of the shadow map value and the depth of the light to determine whether to shadow or to light this pixel.         // If the light is in front of the object then light the pixel, if not then shadow this pixel since an object (occluder) is casting a shadow on it.             if(lightDepthValue < depthValue)             {                 // Calculate the amount of light on this pixel.                 float lightIntensity = saturate(dot(bumpNormal, normalize(input.lightPos_LS[i])));                 if(lightIntensity > 0.0f)                 {                     // Determine the final diffuse color based on the diffuse color and the amount of light intensity.                     float spotLightIntensity = CalculateSpotLightIntensity(                         input.lightPos_LS[i], // NOTE - this is NOT NORMALIZED!!!                         cb_lights[i].lightDirection,                          bumpNormal/*input.normal*/);                     lightColor += cb_lights[i].diffuseColor*spotLightIntensity* .18f; // spotlight                     //lightColor += cb_lights[i].diffuseColor*lightIntensity* .2f; // square light                 }             }         }     }     // Saturate the final light color.     lightColor = saturate(lightColor);    // lightColor = saturate( CalculateNormalMapIntensity(input, lightColor, cb_lights[0].lightDirection));     // TEXTURE ANIMATION -  Sample pixel color from texture at this texture coordinate location.     input.tex.x += textureTranslation;     // BLENDING     float4 color1 = shaderTextures[0].Sample(SampleTypeWrap, input.tex);     float4 color2 = shaderTextures[1].Sample(SampleTypeWrap, input.tex);     float4 alphaValue = shaderTextures[3].Sample(SampleTypeWrap, input.tex);     textureColor = saturate((alphaValue * color1) + ((1.0f - alphaValue) * color2));     // Combine the light and texture color.     float4 finalColor = lightColor * textureColor;     /////// TRANSPARENCY /////////     //finalColor.a = 0.2f;     return finalColor; }  
      Light_vs.hlsl
      Light_ps.hlsl
  • Popular Now