Most efficient way to batch drawings

Started by
12 comments, last by Xeeynamo 11 years, 4 months ago

Hi, I'm interested on a bit of theory about the best methods of optimization for OpenGL 3.0 (where a lot of function became deprecated).

On my current 2D framework, every sprite has own program with own values inside the uniform. Every sprite is draw separately and, now that I switched from 2.1 to 3.0, every sprite has own matrix Projection and View. Now my goal is to batch most vertexes possible and these are some ideas:

1) Use only one program for everything. The projection matrix is one, i can group the vertexes and send via glVertexAttribArray the values for shader and draw everything with one call. The problem is the model view matrix, that should be one for every vertex and this isn't the thing that I want because every sprite has own matrix.

2) Continue to use various shader. The projection matrix is shared between programs (how can I do it?), every sprite has own shader with own model view matrix and uniform values. The problem here is that I need to switch the program between sprite draws.

None of these ideas work as I expected so now I'm here to ask you what is it the most efficient way to batch drawings in OpenGL 3.0.

Advertisement
If only one or two transform matrices are unique for every sprite, I see no reason why you can't draw them all in one single call. You can index into a uniform array or into a buffer texture to read these, using e.g. gl_InstanceID in the vertex shader if you use instancing (or gl_VertexID divided by 4 otherwise).

Or, you can generate quads from points in the geometry shader and use either gl_VertexID or gl_PrimitiveID (which are the same in that particular case) as an index (in that case, transform is done in the GS too). A sprite likely does not have a dozen output attributes, so the geometry shader should be reasonably efficient, too.

Either solution is a thousand times more efficient than binding different uniforms (or even shaders!) for every sprite, or for some subset of sprites that you have determined with some clever batching algorithm.
1) Use only one program for everything. The projection matrix is one, i can group the vertexes and send via glVertexAttribArray the values for shader and draw everything with one call. The problem is the model view matrix, that should be one for every vertex and this isn't the thing that I want because every sprite has own matrix.
I'm not sure what you mean by this, but maybe what you want is instancing.

2) Continue to use various shader. The projection matrix is shared between programs (how can I do it?), every sprite has own shader with own model view matrix and uniform values. The problem here is that I need to switch the program between sprite draws.
Uniform buffers make sharing easy.
If only one or two transform matrices are unique for every sprite, I see no reason why you can't draw them all in one single call. You can index into a uniform array or into a buffer texture to read these, using e.g. gl_InstanceID in the vertex shader if you use instancing (or gl_VertexID divided by 4 otherwise).

Or, you can generate quads from points in the geometry shader and use either gl_VertexID or gl_PrimitiveID (which are the same in that particular case) as an index (in that case, transform is done in the GS too). A sprite likely does not have a dozen output attributes, so the geometry shader should be reasonably efficient, too.

Either solution is a thousand times more efficient than binding different uniforms (or even shaders!) for every sprite, or for some subset of sprites that you have determined with some clever batching algorithm.

So if I have 100 sprites I should send 100 view model matrix with glUniformMatrix4fv and select them with gl_VertexID/4?

1) Use only one program for everything. The projection matrix is one, i can group the vertexes and send via glVertexAttribArray the values for shader and draw everything with one call. The problem is the model view matrix, that should be one for every vertex and this isn't the thing that I want because every sprite has own matrix.
I'm not sure what you mean by this, but maybe what you want is instancing.

2) Continue to use various shader. The projection matrix is shared between programs (how can I do it?), every sprite has own shader with own model view matrix and uniform values. The problem here is that I need to switch the program between sprite draws.
Uniform buffers make sharing easy.

Yes, I mean instancing (I saw what instancing is it only now). Do you recommend me to send matrices in an uniform array or in a texture?

I always prefer using uniform buffers. Initially the piping is a bit tricky to understand, but once you grasp that part, their advantages over textures are apparent.

BTW, OpenGL 3 supports instancing.
So if I have 100 sprites I should send 100 view model matrix with glUniformMatrix4fv and select them with gl_VertexID/4?


I didn't read into it the first time, but the answer is no. A big no. It's much better to use uniform buffers for something this big (or for something that you're going to share). In fact it's better to limit the usage of global uniforms only to those cases in which the overhead of using the buffer is greater.

Okay, I reduced the uses of shaders to one only and I've implemented the uses of VBO. I'm unpacking the triangle strip to a triangle list into a structure with 512 * sizeof(Vertex) size. I'm building and drawing the VBO when the structure is filled with this:


glBufferData(GL_ARRAY_BUFFER, m_vertexcacheIndex * sizeof(SuperVertex), m_vertexcache, GL_DYNAMIC_DRAW);
glVertexAttribPointer(vert_position, 3, GL_FLOAT, GL_FALSE, sizeof(SuperVertex), BUFFER_OFFSET(0 * sizeof(float)));
glVertexAttribPointer(vert_texture, 3, GL_FLOAT, GL_FALSE, sizeof(SuperVertex), BUFFER_OFFSET(3 * sizeof(float)));
glVertexAttribPointer(vert_color, 4, GL_FLOAT, GL_FALSE, sizeof(SuperVertex), BUFFER_OFFSET(6 * sizeof(float)));
glDrawArrays(GL_TRIANGLES, 0, m_vertexcacheIndex);
m_vertexcacheIndex = 0;

where m_vertexcacheIndex is the vertices count inside th structure, m_vertexcache is the structure itself and supervertex is the structure definition. I debugged the software with gDEBugger, before VBO I was doing 12k gl calls per frame, now only 120 calls but I have bad performances. Before 720fps, now 350...

I did some tests:

1) Call glVertexAttribPointer and glDrawArrays with GL_TRIANGLE_STRIP for every sprite (the original mode before to create this post), reaches 498fps. The stride here is 0, this mean that vertex position, texture position and color are in separate structures.

2) Cache the vertices in an array of 1024 structures. I'm copying the vertices that I'm passing to the cache with a memcpy. When the array is full, the content is drawn with glVertexAttribPointer and glDrawElements with GL_TRIANGLE_STRIP. I'm indexing the vertices here. The stride is 0. 589fps!!!

3) Same as above, but vertex position, texture position and color are on the same structure, this mean that I need to call memcpy to copy the sprite model, only once. I was expecting an improvment. 399fps.

4) Same as 4, but this time I'm unpacking the vertices from GL_TRIANGLE_STRIP to GL_TRIANGLES. I'm passing the 4 vertices and a function unpack them to 6 vertices. With this I don't need of indexed vertices. This takes much memory but the fps reached are 562!

5) Same as 3, but this time I'm using VBO: only 270fps.

6) Same as 4 but with VBO: 278fps.

Supposing that I'm not doing nothing's wrong, the best mode is the second. It doesn't take much memory and the indexing mode is easy to do. With this I can hardcode some basic models and indexing them. The vertex unpacking from STRIP to LIST can takes a lot of resources and it doesn't improve so much. I should avoid the structures all-in-one (I read from OpenGL documentation that it's implemented for D3D compatibility) and stores every attrib in a separate structure. For some reason, VBO decrease the performances and with this, SwapBuffer takes a lot of CPU. However all this methods are CPU-limited, because the GPU isn't totally used. Much of the CPU is drawined by memcpy and SwapBuffer.

EDIT: I tried the same tests with the same software without edits on another computer that handle a Intel HD3000 (the first tests run on a Radeon 4870HD): 62, 178, 124, 163, 97, 207fps. VBO with triangle list is much faster this time. I'm starting to be confused...

For some reason, VBO decrease the performances and with this, SwapBuffer takes a lot of CPU. However all this methods are CPU-limited, because the GPU isn't totally used. Much of the CPU is drawined by memcpy and SwapBuffer.

EDIT: I tried the same tests with the same software without edits on another computer that handle a Intel HD3000 (the first tests run on a Radeon 4870HD): 62, 178, 124, 163, 97, 207fps. VBO with triangle list is much faster this time. I'm starting to be confused...

If you gave us more details about the way you have measured the time, maybe we could find the cause. SwapBuffers is not a time-consuming instruction. The reason it take time is waiting for drawing to finish. That implies your measured time is incorrect. How did you measured it?

For some reason, VBO decrease the performances and with this, SwapBuffer takes a lot of CPU. However all this methods are CPU-limited, because the GPU isn't totally used. Much of the CPU is drawined by memcpy and SwapBuffer.

EDIT: I tried the same tests with the same software without edits on another computer that handle a Intel HD3000 (the first tests run on a Radeon 4870HD): 62, 178, 124, 163, 97, 207fps. VBO with triangle list is much faster this time. I'm starting to be confused...

If you gave us more details about the way you have measured the time, maybe we could find the cause. SwapBuffers is not a time-consuming instruction. The reason it take time is waiting for drawing to finish. That implies your measured time is incorrect. How did you measured it?

I'm measuring it with gDEBugger, setting SwapBuffer as end-of-frame. With the profiling of Visual Studio, I can see clearly that SwapBuffers takes the 50% of the CPU in a single frame.

This topic is closed to new replies.

Advertisement